

Building better communities with you

Year 5 Massachusetts Small Municipal Separate Storm System Permit – Nitrogen Source Identification Report

Submitted to the Town of Oxford
June 30th, 2022 – Updated June 30, 2023
Nitsch #14845

Year 5 Massachusetts Small Municipal Separate Storm System Permit – Nitrogen
Source Identification Report
For the Town of Oxford

Table of Contents

1	Introduction	4
1.1	Nutrients and Water Pollution	4
1.2	Regulatory Context.....	4
2	Data Sources and Analytical Methods.....	6
3	MS4 Total Urbanized Regulated Area.....	7
4	Impervious Area and Directly Connected Impervious Area (DCIA).....	9
5	Identification, Delineations, and Prioritization of Potential Catchments with High Nitrogen Loading	10
5.1	Estimated Nitrogen Loading.....	10
5.2	Outfall Screening Monitoring Results	10
5.3	Catchment Prioritization.....	10
6	Potential Stormwater BMP Opportunities	12
6.1	BMP Suitability Assessment	12
6.2	High Priority Parcels Based on Nitrogen Loading.....	13
7	Planned Structural Controls Implementation Schedule.....	16
Appendix A – Calculation & GIS Methods		
Appendix B – Outfall Catchment Calculations for Impervious Area, DCIA & Nitrogen Load		
Appendix C – Outfall Screening Data		
Appendix D – BMP Assessment Methodology		
Appendix E – BMP Assessment Results		
Appendix F – Nitrogen Control BMP Sites & Maps		
Appendix G – Implementation Schedule		

List of Tables

Table 1. Impaired Receiving Waters, Category 5 – Requiring a TMDL.....	5
Table 2. Data Sources	6
Table 3. Summary of Impervious Area and DCIA within Oxford's MS4-regulated Area Catchments.....	9
Table 4. Total Impervious Area and DCIA for the Ten Most Impervious Catchments	9
Table 5. Estimated Nitrogen Loading for Five Highest-Load Catchments in MS4 Area	10
Table 6. High & Medium Priority BMP Locations for Nitrogen Removal.....	14

List of Figures

Figure 1. Map of Town of Oxford Category 5 Impaired Waters - Waters requiring a TMDL (Source: MassGIS)	5
Figure 2. Stormwater Catchment Areas for the Town of Oxford	8
Figure 3. Estimated Nitrogen Loading per Catchment Area in Oxford	11

1 Introduction

1.1 Nutrients and Water Pollution

Water quality in the nation's rivers, streams, ponds, and lakes is threatened by excess nutrients entering these water bodies via stormwater runoff. As development of paved surfaces like roads, roofs, and parking lots increases, so does the amount of stormwater runoff entering the stormwater management drainage system and eventually discharging to waterways or water bodies. Nutrients, including nitrogen, are carried to waterbodies in the form of organic debris, animal and pet waste, lawn or agricultural fertilizers, malfunctioning sewers and septic systems, along with plenty of other sources.

Excess nitrogen, along with other pollutants such as phosphorus and bacteria, are threatening the ecosystems of these waterways. Excess plant and algae growth lead to toxic environments for both humans and aquatic wildlife which impedes recreational uses in lakes, streams and rivers. Nitrogen becomes a primary concern in areas where freshwater rivers flow into saltwater estuaries and bays.

1.2 Regulatory Context

Under the federal and state Clean Water Acts, the Massachusetts Department of Environmental Protection (MassDEP) is charged with establishing water quality standards and determining whether waterways meet these designated standards. MassDEP published the Massachusetts 2018/2020 list - "Final 2018/2020 Integrated List of Waters" also referred to as the 303d Impaired Waters List, identifying waters that do not meet standards. These waterways are referred to as being "impaired" or "water quality limited" based on one or more causes which may include nitrogen, phosphorous, "nutrient/eutrophication biological indicators" or in some cases turbidity or transparency. MassDEP is also charged with preparing waterbody-specific cleanup plans for nutrient pollution known as Total Maximum Daily Loads or TMDLs, though these are yet to be prepared for many impaired waterways.

The Town of Oxford ("the Town") is subject to the requirements of the US Environmental Protection Agency's (EPA's) 2016 Massachusetts Small MS4 General Permit (the Permit). One of the requirements of the Permit is that Massachusetts communities located within the Long Island Sound watershed, which has an approved TMDL for Total Nitrogen, shall prepare a Nitrogen Source Identification Report as detailed in Appendix F of the Permit. The Town of Oxford is within the French River Watershed which joins the Thames River and drains to the Long Island Sound. There are two listings in the Town of Oxford for rivers as impaired in Category 5 of MassDEP's 2018 303d list. Table 1 shows the listing of these waters. Figure 1 is a map of the impaired waters in Oxford.

Table 1. Impaired Receiving Waters, Category 5 – Requiring a TMDL

Water Body	Segment ID	Description	Size	Units	Impairment
Wellington Brook	MA42-11	Headwaters south of Cedar Street, Auburn to mouth at confluence with French River, Oxford.	3.4	Miles	Escherichia Coli (E. Coli)
French River	MA42-03	Headwaters, outlet Greenville Pond, Leicester to the outlet of Thayers Pond, Oxford (excluding approximately 0.6 miles through Rochdale Pond segment MA42048) (through former pond segments Texas Pond MA42058 and Thayers Pond MA42059).	3.8	Mile	Mercury in Fish Tissue

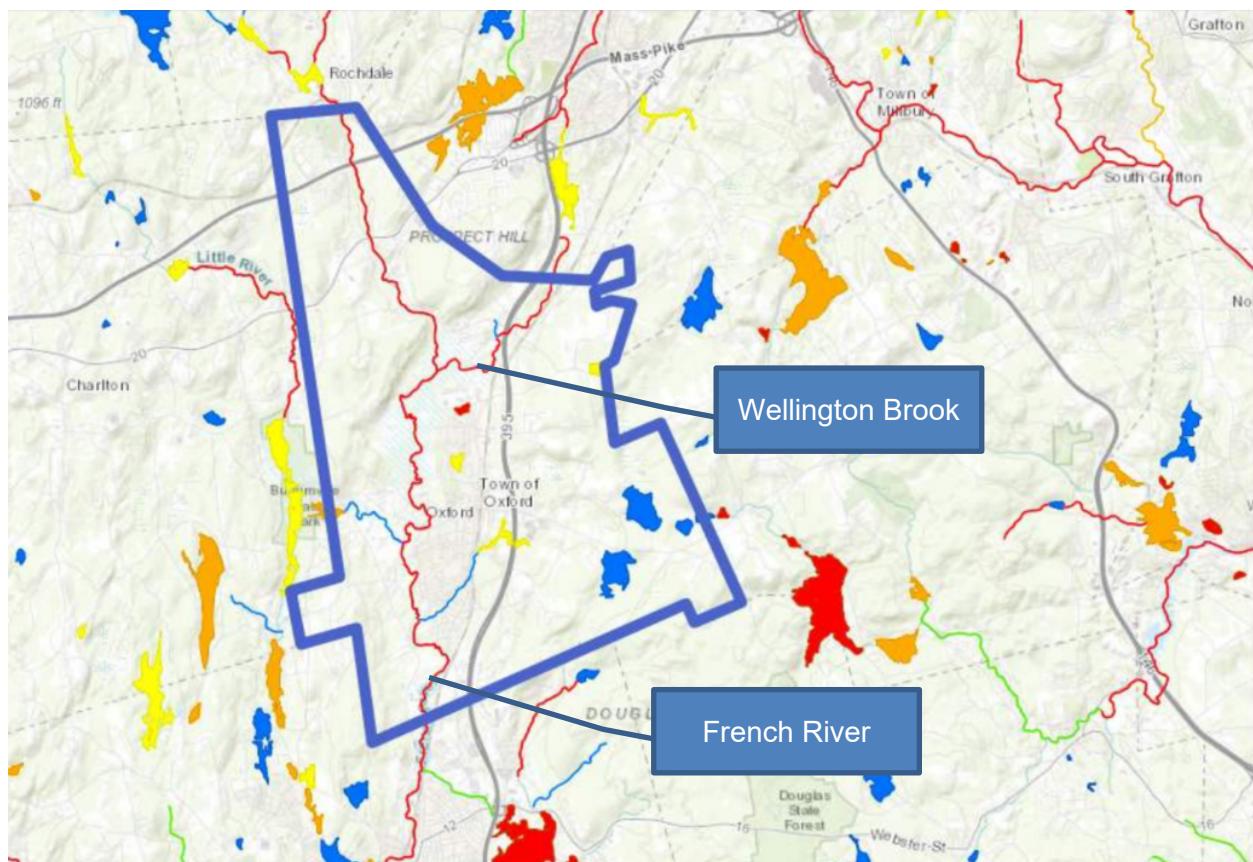


Figure 1. Map of Town of Oxford Category 5 Impaired Waters - Waters requiring a TMDL (Source: MassGIS)

The Nitrogen Source Identification Report must be submitted with the permit year 4 annual report (year ending June 30, 2022, and report due late September 2022). Appendix F of the EPA 2016 MS4 Permit describes the following requirements for the Nitrogen Source Identification Report:

1. Calculation of total urbanized area within the permittee's jurisdiction that is within the Connecticut River Watershed, the Housatonic River Watershed, or **the Thames River Watershed**, incorporating updated

mapping of the MS4 and catchment delineations produced pursuant to part 2.3.4.6;

2. All screening and monitoring results pursuant to part 2.3.4.7.b., targeting the receiving water segment(s);
3. Impervious area and DCIA for the target catchment;
4. Identification, delineation and prioritization of potential catchments with high nitrogen loading;
5. Identification of potential retrofit opportunities or opportunities for the installation of structural BMPs during redevelopment.

2 Data Sources and Analytical Methods

Several existing data sets were used to complete this work. Table 2 below list the utilized data sets and their references.

Table 2. Data Sources

Existing Data Set	Origin	Date Published/ Updated	Link
2016 Land Cover/Land Use	MassGIS	May 2019	https://docs.digital.mass.gov/data-set/massgis-data-2016-land-coverland-use
Soil Survey Geographic (SSURGO) Database for Worcester County, Massachusetts	USDA	June 2020	<p>Downloaded through Web Soil Survey (https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm).</p> <p>Hydrologic soil groups extracted using Soil Data Viewer Version 6.1 (https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcs142p2_053619)</p>
Town of Oxford Catchments	Town of Oxford GIS files	Received 2/10/2022	Email from Judy Lochner jlochner@oxfordma.us

Impervious area is the portion of the Town that is paved, covered by buildings, or otherwise rendered unable to absorb water naturally due to development. Impervious area for the Town was calculated using the MassGIS 2016 Land Cover/Land Use data layer which was published in 2019. This data layer maps impervious and pervious land cover by land use type based on aerial photography and other data sources. This was overlaid with the Town's data layer for outfall catchment areas (the area draining to each Town-owned stormwater discharge point) to estimate total areas and total impervious area discharging to or upstream of nutrient-impaired waterways, as well as to estimate impervious area for each stormwater outfall catchment.

Directly connected impervious area (DCIA), also referred to as "effective impervious cover," is the amount of impervious area that is directly connected to the storm drain system. Most land in the Town was developed before the creation of modern requirements to capture, clean, slow, and recharge stormwater runoff using Stormwater Control Measures (SCMs). However, many new development and

redevelopment projects constructed in recent years have required the installation or upgrade of SCMs, such that today some properties have no SCMs, some have SCMs that meet some modern standards, and some have SCMs that are fully compliant with modern standards.

Because site-specific information about the existence of specific SCMs is not available at the parcel level, an estimate of DCIA or effective impervious cover is used to approximate the average level of SCMs installed across the watershed. DCIA was estimated based on land use categories following EPA guidance.

To estimate the pollutant loads for nitrogen in each catchment, estimated pollutant loading rates for different combinations of land use type, land cover type, and soil type were applied in accordance with guidance in the EPA 2016 MS4 Permit. The individual loading rates for these unique subsections were summed based on catchment, which produced an overall estimated catchment pollutant loading rate.

For a more detailed description of the analytical methods used for this project, refer to the Calculation & GIS Methods document in Appendix A.

3 MS4 Total Urbanized Regulated Area

The total area of the Town of Oxford is approximately 17,600 acres, with approximately 9,370 acres located in the urbanized/MS4-regulated area. All of the MS4 regulated acreage is within the Thames River Watershed. The Town's urbanized/MS4-regulated area included in Year 4's Nitrogen Source Analysis includes 218 outfall catchment areas totaling 3,422 acres. Therefore, the only areas included in this analysis are areas within an outfall catchment that are also within the urbanized/MS4-regulated area.

Figure 2 shows the Town of Oxford's catchment areas with the urbanized areas overlaid in red hatch.

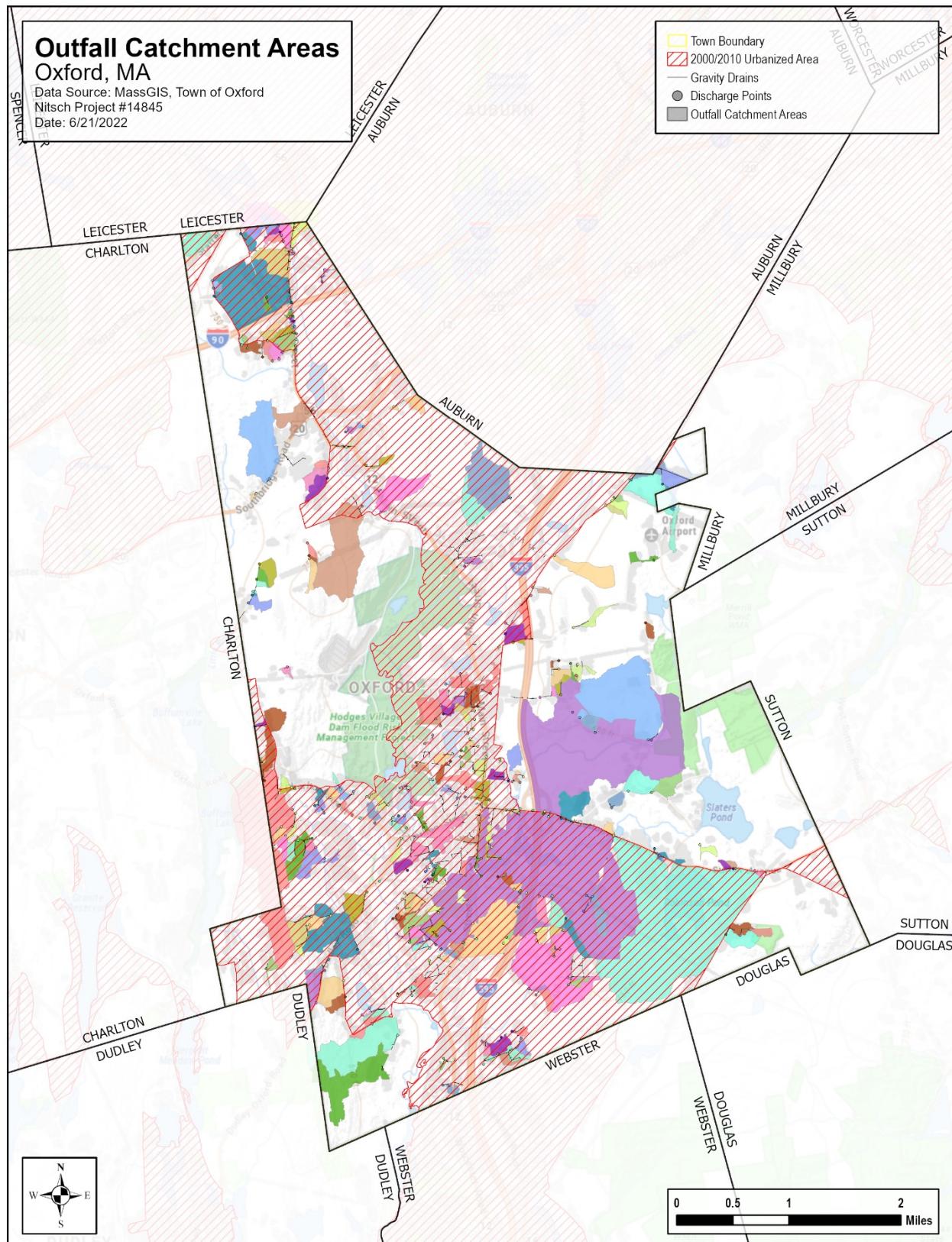


Figure 2. Stormwater Catchment Areas for the Town of Oxford

4 Impervious Area and Directly Connected Impervious Area (DCIA)

Table 3 below summarizes the total impervious area (IA) and estimated Directly Connected Impervious Area (DCIA) within the Town of Oxford's outfall catchment areas in the MS4-regulated area.

Table 3. Summary of Impervious Area and DCIA within Oxford's MS4-regulated Area Catchments

Total within MS4 Area for Oxford	Acres
Impervious Area	336.01
Estimated DCIA	87.15

Table 4 below shows information for the 10 catchments within the MS4-regulated area with the most impervious area. The catchments are labeled using the Town's identifier for the outfall to which they drain. The table is sorted in descending order of total impervious area. A full list of impervious area and estimates of DCIA for all storm drain outfall catchments in the Town of Oxford is attached as Appendix B.

Table 4. Total Impervious Area and DCIA for the Ten Most Impervious Catchments

Catchment Identifier	Impervious Area (Acres)	Percent Impervious	DCIA (Acres)	Percent DCIA
OF-108	65.44	8.48%	8.70	1.13%
OF-270	18.32	11.40%	4.85	3.02%
OF-192	16.91	2.33%	4.06	0.56%
OF-98	10.85	23.61%	3.25	7.07%
OF-141	10.71	7.64%	1.15	0.82%
OF-166	8.54	8.55%	1.18	1.18%
OF-173	7.55	4.27%	0.72	0.40%
OF-158	7.07	52.91%	1.88	14.04%
OF-134	6.90	46.52%	2.24	15.14%
OF-142	6.14	48.47%	2.39	18.85%

5 Identification, Delineations, and Prioritization of Potential Catchments with High Nitrogen Loading

5.1 Estimated Nitrogen Loading

Using methods described in Appendix A, estimates of nitrogen loading potential were created for each of the Town's storm drain outfall catchments. Figure 3 shows the estimated nitrogen loading of each catchment within the Town of Oxford's MS4 area.

Table 5 shows the five catchments with the highest estimated nitrogen loading in the entire urbanized/MS4-regulated area. A complete table showing calculated nitrogen loading estimates for all catchments analyzed for the Town of Oxford is attached in Appendix B.

Table 5. Estimated Nitrogen Loading for Five Highest-Load Catchments in MS4 Area

Catchment Identifier	Estimated N Load (lbs/year)
OF-108	2,019.94
OF-192	1,376.65
OF-270	617.62
OF-173	476.00
OF-141	371.96
Top 5 as a % of Total Town Load	50.11%

Note these are estimated loadings based on land cover, land use, and soil type. For this analysis, estimated DCIA (e.g. typical level of SCMs in Town) was not used in estimating Nitrogen loading. Further analysis using another calculation method could be employed in future permit years. Actual loading may vary considerably from site to site depending on what SCMs are present. Regional studies such as the Charles River Phosphorous TMDL have indicated that the default DCIA assumptions used by EPA are somewhat optimistic, such that actual loading rates may be higher. However, these estimates provide a valuable guide to help identify those areas of the Town that should be the highest priorities for interventions to begin reducing pollutant loading.

5.2 Outfall Screening Monitoring Results

The Town of Oxford has visibly screened each outfall from August 2019 to June 2022. Detailed outfall screening data is found in Appendix C. As of June 2023, outfall sampling results are not available. Once they become available, they will be included in this section and the findings shall be incorporated into any updates to the highest priority catchments with respect to nitrogen loading.

5.3 Catchment Prioritization

The results of the nitrogen loading calculations (Table 5), along with other pertinent data, were utilized in the Municipal Property Retrofit analysis to prioritize locations for future stormwater treatment. Refer to the *Year 4 Massachusetts Small Municipal Separate Storm System Permit – Municipal Property Retrofits Report* for additional information on the prioritization methodology and results.

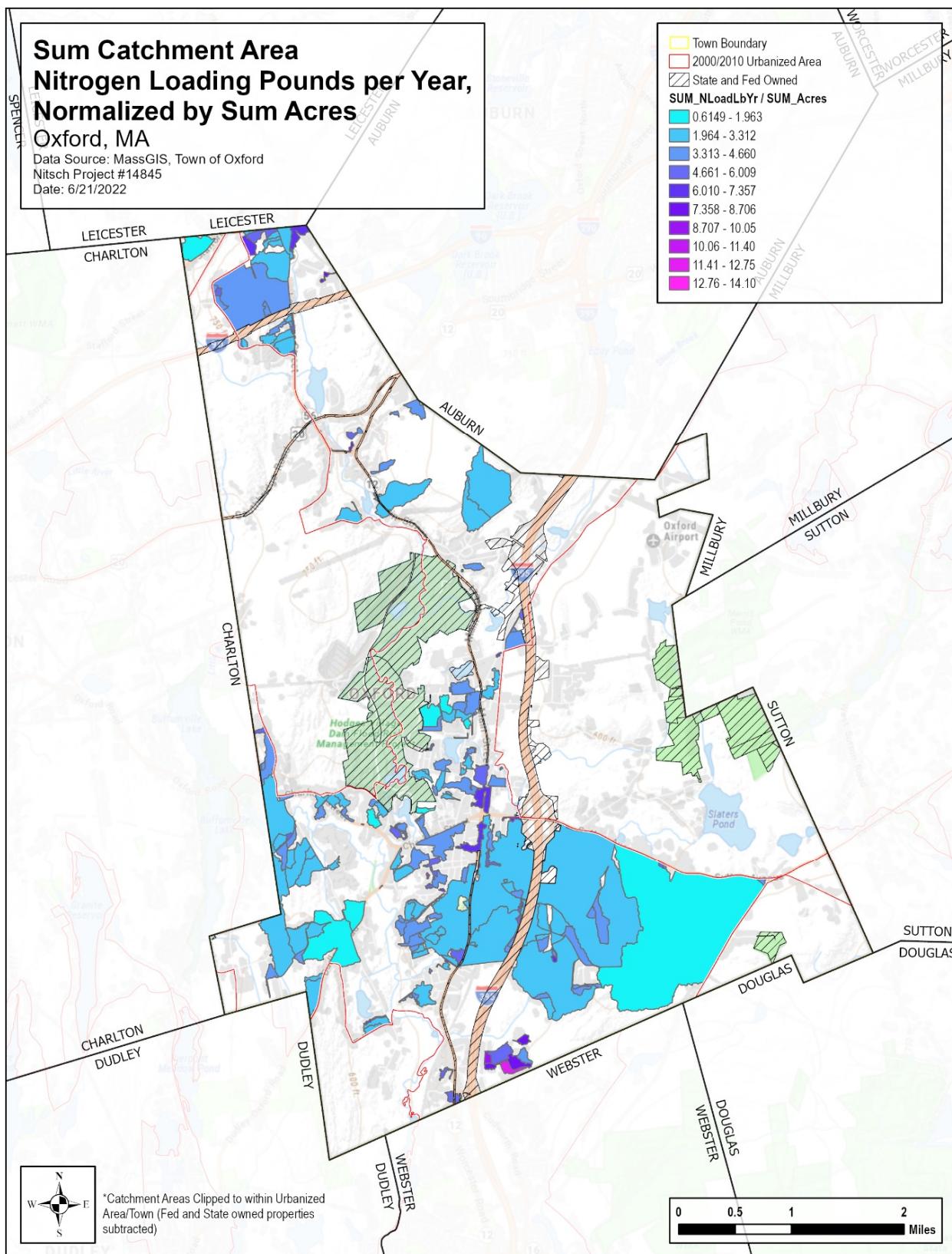


Figure 3. Estimated Nitrogen Loading per Catchment Area in Oxford

6 Potential Stormwater BMP Opportunities

6.1 BMP Suitability Assessment

A high-level stormwater BMP suitability assessment was conducted on all town-owned parcels to determine what structural BMPs could be implemented to mitigate both nitrogen and phosphorus within the Town of Oxford. The detailed methodology and GIS data used in this assessment can be found in Appendix D. Sites were initially categorized into three groups:

- Sites unsuitable for BMP implementation
- Sites suitable for “Type 1” BMP implementation (infiltrative BMPs such as infiltration trenches or infiltrative bioretention)
- Sites suitable for “Type 2” BMP implementation (non-infiltrative BMPs)

The analysis produced a total of 96 potential BMP sites on 60 town-owned parcels. The following criteria were used to determine the suitability of a site for BMP implementation:

- 1) Topography/Slope - Sites with a slope of greater than 5% were considered unsuitable for implementation of a BMP for this initial analysis.
- 2) Soil type – Sites with a majority of soil classified as Hydrologic Soil Group (HSG) A, B, or C were considered suitable for an infiltrative BMP (Type 1) whereas sites with majority soils classified as HSG D, A/D, B/D, C/D, or unknown were considered suitable for non-infiltrative BMPs (Type 2).
- 3) Depth to groundwater – Sites where groundwater was greater than 4 feet were considered suitable for infiltrative BMPs (Type 1); sites where the depth to groundwater was known to be less than 4 feet were considered suitable for non-infiltrative BMPs (Type 2); in cases where the depth to groundwater was unknown, these sites were analyzed as non-infiltrative BMPs (Type 2).
- 4) Proximity to buildings – Building footprints were mapped in GIS and were not considered as sites for implementation of BMPs; sites within 10 feet of a MassGIS inventoried building were also not considered as sites for implementation of BMPs.
- 5) Adjacent to MassDOT roads – Sites within 100 feet of a MassDOT road were considered as sites for implementation of BMPs as they will readily allow for construction and maintenance access.
- 6) Proximity to wetland resource areas – Sites within 25 feet of MassDEP wetlands were not considered as sites for implementation of BMPs.
- 7) Watersheds that did not contain impervious area were considered unsuitable for BMP implementation.

The annual Total Phosphorus (TP) and Total Nitrogen (TN) reduction for each potential BMP was calculated using the performance curves for each of the BMP types found in Attachment 3 to Appendix F of the MS4 Permit. The final set of BMP sites were then reviewed for potential implementation of structural nitrogen controls as well as for use in phosphorus reduction as explained in more detail in the Town of Oxford’s Lake Phosphorus Control Plan.

6.2 High Priority Parcels Based on Nitrogen Loading

The Town of Oxford developed a priority ranking of areas and infrastructure within the municipality for potential implementation of structural BMPs.

A total of 60 town-owned parcels containing 96 potential BMP locations which were ranked based on potential implementation of structural BMPs to reduce Nitrogen load. Table 6 below shows BMP locations with ranked “high” and “medium”.

Table 6. High & Medium Priority BMP Locations for Nitrogen Removal

Ranking for NSID Report	LOC_ID_BMP Locations	Site Address	Land Use	Cumulative Nitrogen Load Reduction (lbs/yr)
HIGH	F_548642_2887754_02	0 LEICESTER ST	multi-family residential	5.745
HIGH	F_553938_2870622_11	0 CHURCH ST		6.922
HIGH	F_554781_2871780_20	0 FOREST ST	near McKinstry Pond	0.181
HIGH	F_556201_2871585_06	0 FOREST ST	single family residential	0.142
HIGH	F_555871_2867501_02	34 CHARLTON ST	DPW Garage	216.800
	F_556403_2869246_09	0 MAPLE RD	Oxford Community Center, basketball, field, playground	152.873
HIGH	F_556895_2868222_02	5 SIGOURNEY ST	Town Hall Parking	3.304
HIGH	F_556901_2867471_01	3 BARTON ST	mixed use	2.049
HIGH	F_557059_2868110_01	325 MAIN ST	Town Hall	4.890
HIGH	F_557101_2868431_02	339 MAIN ST	Library	3.002
HIGH	F_557338_2873475_01	450 MAIN ST	DPW Headquarters	3.112
HIGH	F_557458_2869400_07	350 MAIN ST	Joslin Park	2.956
HIGH	F_557509_2869588_01	352 MAIN ST	Joslin Park	0.525
HIGH	F_549728_2886376_02	0 SOUTHBRIDGE RD	commercial	1.030
HIGH	F_556403_2869246_07	0 MAPLE RD	Oxford Community Center	0.106
HIGH	F_556403_2869246_08	0 MAPLE RD	Oxford Community Center	0.669
HIGH	F_556403_2869246_10	0 MAPLE RD	Oxford Community Center	2.767
HIGH	F_556403_2869246_11	0 MAPLE RD	Oxford Community Center	0.054
HIGH	F_556989_2873986_01	4 EDDY ST	vacant lot	15.453
HIGH	F_556989_2873986_02	4 EDDY ST	vacant lot	20.762
HIGH	F_558185_2857434_06	0 INDUSTRIAL PARK EAST RD		203.749
MEDIUM	F_555478_2875043_12	100 CARBUNCLE DR	Oxford High School	36.409
MEDIUM	F_555896_2864398_09	9 CLOVER ST	Alfred E. Chaffee School	35.723
MEDIUM	F_556065_2880446_08	25 DEPOT RD	Clara Barton School	28.888
MEDIUM	F_556358_2861578_03	0 MAIN ST		17.058
MEDIUM	F_558185_2857434_09	0 INDUSTRIAL PARK EAST RD		66.031

The following criteria was used to determine ranking of potential BMP sites for nitrogen controls:

- 1) Nitrogen loading (lb/year) - Available screening and monitoring results to date did not include nitrogen loads and were not used during this initial analysis but will be incorporated into priority rankings in future years; as a part of this analysis, nitrogen loads were calculated for each individual potential BMP's watershed; sites were ranked higher in priority based on higher loading.
- 2) Total Nitrogen (TN) removed – Sites achieving higher nitrogen removal were ranked a higher priority.
- 3) Location within Urbanized Area (MS4-regulated area) – Sites located outside the Urbanized Area were not considered for BMP implementation.
- 4) Location within a Phosphorus Impaired Lake or Pond Watershed - Sites located within an impaired pond watershed ranked higher in priority. Impaired lakes and ponds include: Buffumville Lake, Lowes Pond, McKinstry Pond, Robinson Pond, and Texas Pond.
- 5) Proximity to outfalls – using the existing MS4 mapping, sites located closer to the downstream end of large drainage areas gave sites higher priority over areas located at the top of a watershed.
- 6) Opportunities for public use and education – Sites located near elementary, middle, and high schools, as well as sites often visited by the public, such as town hall and parks, were prioritized over sites that would see less interaction from town residents and visitors.
- 7) Capital Plans & Pavement Management Plan – The Town of Oxford routinely updates their planning efforts to anticipate funding needs for upcoming fiscal years. As part of the LPCP assessment, these plans were reviewed to understand upcoming planned projects and how they could incorporate stormwater BMPs and improve water quality. Refer to the Lake Phosphorus Control Plan for further information about potential stormwater BMP integration into upcoming municipal roadway projects.
- 8) Discharges to water quality limited waters, first or second order streams, public swimming beaches, drinking water supply sources, etc. – Sites located near any of these water bodies were given priority because of additional public health benefits improved water quality can provide.

Results of the analysis for BMP suitability can be found in Appendix E. A full list of sites ranked for nitrogen controls can be found in Appendix F which includes maps of all sites.

7 Planned Structural Controls Implementation Schedule

The Town of Oxford has prepared an implementation schedule for the structural controls proposed to improve nitrogen and phosphorus reduction. This schedule is included as Appendix G. Additional details are available from the DPW office or the Town's Conservation Commission. This implementation schedule was driven by the required phosphorus load reductions and associated prioritization outlined in the Lake Phosphorus Control Plan but will achieve significant nitrogen reductions as detailed in Section 6.2.

The Town of Oxford is also installing a demonstration project in the Lowes Pond watershed as part of the requirements of the Lake Phosphorus Control Plan. The project is described in Appendix H.

Appendix A – Calculation & GIS Methods

Year 4 Oxford MS4 Permit Analysis

This document serves as Appendix A to the Town of Oxford's Year 4 Nutrient Source Identification Report and Phosphorus Control Plan updates as required by the 2016 MA Small MS4 Permit. This document outlines the methodology utilized for the nutrient analysis in both documents, which were performed using ArcGIS Pro 2.8.0.

1. Data Sources

- Pond Watersheds - StreamStats (usgs.gov)
- 2000 Urbanized Areas - Layer: Urbanized Areas (ID: 4) (census.gov)
- 2010 Urbanized Areas - Layer: Urbanized Areas (ID: 1) (census.gov)
- 2016 Land Cover Land Use (four blocks) - MassGIS Data: 2016 Land Cover/Land Use | Mass.gov
- Hydrologic Soil Groups - MassGIS Data: Soils SSURGO-Certified NRCS | Mass.gov
- Tax Parcels from Oxford, MA - Judy Lochner jlochner@oxfordma.us
- Oxford MA MS4 year 3 drainage catchment area – Town of Oxford (received 2/10/2022)
- Municipal Boundaries - MassGIS Data: Municipalities | Mass.gov
- MassDEP Wellhead Protection Areas (Zone II, Zone I, IWPA) - MassGIS Data: MassDEP Wellhead Protection Areas (Zone II, Zone I, IWPA) | Mass.gov
- Surface Water Supply Protection Areas (ZONE A, B, C) - MassGIS Data: Surface Water Supply Protection Areas (ZONE A, B, C) | Mass.gov
- NHESP Certified Vernal Pools - MassGIS Data: NHESP Certified Vernal Pools | Mass.gov
- BioMap2 - MassGIS: BioMap2 | Mass.gov
- Building Structures (2-D) - MassGIS Data: Building Structures (2-D) | Mass.gov
- MassDEP Wetlands (2005) - MassGIS Data: MassDEP Wetlands (2005) | Mass.gov
- 2020 Environmental Justice Populations - MassGIS Data: 2020 Environmental Justice Populations | Mass.gov
- Public Water Supplies - MassGIS Data: Public Water Supplies | Mass.gov
- Lidar DEM and Shaded Relief - MassGIS Data: Lidar DEM and Shaded Relief | Mass.gov

2. Creation of Base Shapefiles for Phosphorus and Nitrogen Calculations

To define the area of analysis for Phosphorus and Nitrogen calculations, pond watersheds, urbanized area, land cover land use, NRCS soils, and MassDOT road inventory datasets were clipped within the Oxford, MA municipal boundary. The MassDOT road inventory was used to find State and Federal roads which, when overlayed on the Oxford tax parcel dataset, distinguished right-of-way parcels under State and Federal jurisdiction and therefore not included in the Phosphorus and Nitrogen calculation area.

Similarly, Federal and State-owned tax parcels were identified from the attributes of the Oxford tax parcel dataset and removed from the Phosphorus and Nitrogen calculation area. Finally, the urbanized area dataset was used as the boundary of the area considered for Phosphorus and Nitrogen calculations.

To create the base shapefiles for phosphorus and nitrogen loading calculations, 2016 Land Use/Land Cover data from MassGIS was combined with NRCS SSURGO-Certified Soils data. The union of the two datasets created small “records” that were referenced in calculations to find specific Nitrogen or Phosphorus Loads. Each record in the shapefile represents an area with a specific land cover, land use, and soil type.

3. Phosphorus Load Calculations

Annual Phosphorus Load for each record was determined using methodology found in Attachment 1 to Appendix F of the 2016 MS4 Permit. Phosphorus Loading Export rates (PLERs) were determined using crosswalk in the document entitled “2016 Massachusetts Small MS4 Permit Pollutant Loading Export Rates applied to the 2016 Massachusetts Land Use/Land Cover GIS Dataset” published by MassDEP and EPA Region 1.

Watershed areas of the Oxford’s lakes and ponds identified in the MS4 Permit were created with USGS’s Stream Stats program, using a single pour point at the lowest end of each pond. The pond watersheds dataset was used as the clip feature in a “Clip” function targeted at the land cover/land use/NRCS soils dataset described in the last section. The resulting shapefile limits the information contained in the broader town-wide Phosphorus load to only what occurs in each of Oxford’s pond watersheds of concern, allowing further pond-specific analysis of Phosphorus loading.

In the shapefiles produced, a field entitled “Acres” was added to the attribute table. The “Calculate Geometry” function was used, in acre area (geodesic), to populate the field with individual land cover/land use/NRCS soil record areas. This field allowed for the calculation of each record’s phosphorus load in pounds per year when multiplied by the “PLER” field.

In the shapefiles, a field entitled “PLER” was added to the attribute table. For the “PLER” field, a “Field Calculator” function was used to provide a Phosphorus Loading Export Rate (PLER) for each record. PLER is measured in pounds phosphorus per acre per year. PLER was determined using the MassDEP and EPA Region 1 developed crosswalk between the 2016 land use land cover dataset and the EPA Region 1 Pollutant Load Export Rates developed as part of the 2016 MS4 permit. The Table below was prepared by MassDEP and EPA Region 1 to ensure consistency of PLER across records. Using the table, a python script was created for the field calculator.

		LAND COVER CLASSES																		
		IMPERVIOUS	DEVELOPED SPACE OPEN	CULTIVATED	PASTURE/HAY	GRASSLAND	DECIDUOUS	EVERGREEN	SHRUB/ SCRUB	FORESTED PALLISTRINE	SHRUB/SCRUB PALUSTRINE	EMERGENT PALLISTRINE	FORESTED ESTUARINE	SHRUB/SCRUB ESTUARINE	EMERGENT ESTUARINE	SHORED UNCONSOLIDATE	BARE	WATER	BED AQUATIC PALUSTRINE	BED AQUATIC ESTUARINE
LAND USE CLASSES	UNKNOWN	1.52	0.03 - 0.37 *by HSG	0.45	0.45	0.03 - 0.37 *by HSG	0.13	0.13	0.13	0.03 - 0.37 *by HSG										
	OPEN LAND	1.52	0.03 - 0.37 *by HSG	0.45	0.45	0.03 - 0.37 *by HSG	0.13	0.13	0.13	0.03 - 0.37 *by HSG										
	COMMERCIAL	1.78	0.03 - 0.37 *by HSG	0.45	0.45	0.03 - 0.37 *by HSG	0.13	0.13	0.13	0.03 - 0.37 *by HSG										
	INDUSTRIAL	1.78	0.03 - 0.37 *by HSG	0.45	0.45	0.03 - 0.37 *by HSG	0.13	0.13	0.13	0.03 - 0.37 *by HSG										
	FOREST	1.52	0.13	0.13	0.45	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
	AGRICULTURAL	1.52	0.45	0.45	0.45	0.13	0.13	0.13	0.13	0.03 - 0.37 *by HSG										
	RECREATIONAL	1.52	0.03 - 0.37 *by HSG	0.45	0.45	0.03 - 0.37 *by HSG	0.13	0.13	0.13	0.03 - 0.37 *by HSG										
	TAX EXEMPT	1.78	0.03 - 0.37 *by HSG	0.45	0.45	0.03 - 0.37 *by HSG	0.13	0.13	0.13	0.03 - 0.37 *by HSG										
	MIXED- PRIMARILY RESIDENTIAL	2.32	0.03 - 0.37 *by HSG	0.45	0.45	0.03 - 0.37 *by HSG	0.13	0.13	0.13	0.03 - 0.37 *by HSG										
	SINGLE FAMILY RESIDENTIAL	1.96	0.03 - 0.37 *by HSG	0.45	0.45	0.03 - 0.37 *by HSG	0.13	0.13	0.13	0.03 - 0.37 *by HSG										
	MULTI-FAMILY RESIDENTIAL	2.32	0.03 - 0.37 *by HSG	0.45	0.45	0.03 - 0.37 *by HSG	0.13	0.13	0.13	0.03 - 0.37 *by HSG										
	OTHER RESIDENTIAL	1.96	0.03 - 0.37 *by HSG	0.45	0.45	0.03 - 0.37 *by HSG	0.13	0.13	0.13	0.03 - 0.37 *by HSG										
	MIXED OTHER	1.78	0.03 - 0.37 *by HSG	0.45	0.45	0.03 - 0.37 *by HSG	0.13	0.13	0.13	0.03 - 0.37 *by HSG										
	MIXED COMMERCIAL	1.78	0.03 - 0.37 *by HSG	0.45	0.45	0.03 - 0.37 *by HSG	0.13	0.13	0.13	0.03 - 0.37 *by HSG										
	RIGHT OF WAY	1.95	0.03 - 0.37 *by HSG	0.45	0.45	0.03 - 0.37 *by HSG	0.13	0.13	0.13	0.03 - 0.37 *by HSG										
	WATER	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water

Figure 1. Crosswalk of 2016 Land Use and Land Cover categories and PLERs in lbs/acre/year from MassDEP & EPA Region 1 (Note: Hydrologic Soil Group (HSG) A and A/D have a PLER of 0.03, HSG B and B/D have a PLER of 0.12, HSG C and C/D and Unknown have a PLER of 0.21, and HSG D has a PLER of 0.37)

In the shapefiles, a field entitled “PLoadLbYr” was added to the attribute table. For the “PLoadLbYr” field, a “Field Calculator” function was used to provide a Phosphorus Loading Pounds Per Year for each record. By multiplying the record’s acre area (from the “Acre” field) by the record’s PLER (from the “PLER” field) the record’s pounds phosphorus per year was calculated. Using the “Dissolve” function, all records were dissolved together by pond watershed name, with a “SUM” field statistics option selected for the “PLoadLbYr” field. The resulting shapefiles contained a simple table of the pond watershed name and the Phosphorus Loading Pounds per Year associated with the land it encompassed. Further details and the exact steps in this workflow can be found in the “Nitrogen & Phosphorus Loading Calculation Workflow” section of this document.

4. Nitrogen Load Calculations

Annual Nitrogen Load for each record was determined using methodology described in a document entitled “Nutrient Source Identification Report Addendum: Methods” dated June 10, 2021 and prepared by Neponset River Watershed Association. For the Nitrogen loading analysis, a “Loading Export Rate” field was created, along with a field containing the area of a record and final “Loading Pound Per Year” amount.

Nitrogen loads were calculated for each record in the “Oxford MA MS4 year 3 drainage catchment area” model. The catchment area dataset was used as the clip feature in a “Clip” function targeted at the land cover/land use/NRCS soils dataset described in the last section. The resulting shapefile limits the information contained in the larger town-wide Nitrogen load calculation to only what occurs in each drainage catchment area, allowing catchment-specific analysis of Nitrogen loading.

In the shapefiles produced, a field entitled “Acres” was added to the attribute table. The “Calculate Geometry” function was used, in acre area (geodesic), to populate the field with individual land cover/land

use/NRCS soil record areas. This field would allow for the calculation of each record's nitrogen loading pounds per year when multiplied by the field described below.

In the shapefiles, a field entitled "NLER" was added to the attribute table. For the "NLER" field, a "Field Calculator" function was used to provide a Nitrogen Loading Export Rate (NLER) for each record. NLER is measured in pounds nitrogen per acre per year. NLER was determined using the Nitrogen Source Categories and nitrogen load export rates shown in Table 1 of Attachment 1 to Appendix H of the 2016 Massachusetts Small MS4 General Permit. Using the table as reference, a python script was created for the field calculator that assigns a nitrogen loading category to each record and matches it to its corresponding NLER. The Table below was prepared by the Neponset River Watershed Association to demonstrate Land Cover's link to Nitrogen Source Categories.

Table 1. Nitrogen Loading Export Rates

Land Cover	Soil Type	Nitrogen Source Category
Impervious	All	All Impervious Cover
Water	All	None, rate was set to 0 for records that represented surface water.
Non-Impervious, Non-Water	A	Developed Land Pervious (DevPERV)-HSG A
Non-Impervious, Non-Water	B	Developed Land Pervious (DevPERV)-HSG B
Non-Impervious, Non-Water	C	Developed Land Pervious (DevPERV)-HSG C
Non-Impervious, Non-Water	D	Developed Land Pervious (DevPERV)-HSG D
Non-Impervious, Non-Water	A/D	Developed Land Pervious (DevPERV)-HSG A
Non-Impervious, Non-Water	B/D	Developed Land Pervious (DevPERV)-HSG B
Non-Impervious, Non-Water	C/D	Developed Land Pervious (DevPERV)-HSG C/D

In the shapefiles, a field entitled "NLoadLbYr" was added to the attribute table. For the "NLoadLbYr" field, a "Field Calculator" function was used to provide a Nitrogen Loading Pounds Per Year for each record. By multiplying the record's acre area, from the "Acre" field, by the record's NLER, from the "NLER" field, the record's pounds nitrogen per year was calculated. Using the "Dissolve" function, all records were dissolved together by catchment ID, with a "SUM" field statistics option selected for the "NLoadLbYr" field. The resulting shapefiles contained a simple table of the catchment ID and the Nitrogen Loading Pounds per Year associated with the land it encompassed. Further details and the exact steps in this workflow can be found in the "Nitrogen & Phosphorus Loading Calculation Workflow" section (Section 7) of this document.

5. Impervious Calculation for Catchment Areas

Impervious area within each catchment area was calculated using the land cover, land use, soil type records shapefile described in the Creation of Base Shapefiles for Phosphorus and Nitrogen Calculations section. Note that records outside the Urbanized Area and parcels identified as Federal or State-owned land were not included in the calculations.

The 'Oxford MA MS4 year 3 drainage catchment area" shapefile contains polygons of areas within each catchment with like land cover, land use, and soil type. To begin, the "Oxford MA MS4 year 3 drainage catchment area" was queried so that only polygons with an entry of "Impervious" for the "CoverName" field were shown. Then, the Calculate Geometry tool was used on those queried records to display the area of each impervious polygon in acres. These results were eventually summed for overall catchment totals of impervious area.

To further illustrate impervious cover statistics and for use in Directly Connected Impervious Area (DCIA) calculation, the impervious cover in each polygon was also calculated as a percentage of each catchment. For this measurement, the Field Calculator tool was used on the "ImpPercent" field to divide the impervious area of each polygon ("ImpAreaAcre") by the total catchment size ("CatchAreaAcre", created when preparing the catchment shapefile). This figure was then multiplied by 100 to obtain a percent.

6. DCIA Calculation

Directly Connected Impervious Area (DCIA) estimates were based on the Sutherland equations within the EPA guidance document entitled "Estimating Change in Impervious Area (IA) and Directly Connected Impervious Areas (DCIA) for Massachusetts Small MS4 Permit" (Revised April 2014). Table 2 below shows the relation between various land uses in the watershed, the chosen "connectedness" category, and the associated Sutherland equation used in the DCIA estimate. Note that these estimates only occurred on polygons that contained an "Impervious" entry in the CoverName field, as DCIA only exists where impervious area exists.

Table 2. DCIA Calculations per land use

USEGENNAME	"Connectedness" Category	Sutherland Equation
Agriculture	Mostly Disconnected	DCIA=0.01(IA) ²
Commercial	Average	DCIA=0.1(IA) ^{1.5}
Forest	Mostly Disconnected	DCIA=0.01(IA) ²
Industrial	Average	DCIA=0.1(IA) ^{1.5}
Mixed use, other	Average	DCIA=0.1(IA) ^{1.5}
Mixed use, primarily commercial	Average	DCIA=0.1(IA) ^{1.5}
Mixed use, primarily residential	Average	DCIA=0.1(IA) ^{1.5}
Open land	Average	DCIA=0.1(IA) ^{1.5}
Recreation	Average	DCIA=0.1(IA) ^{1.5}
Residential - multi-family	Highly Connected	DCIA=0.4(IA) ^{1.2}
Residential - other	Average	DCIA=0.1(IA) ^{1.5}
Residential - single family	Average	DCIA=0.1(IA) ^{1.5}
Right-of-way	Average	DCIA=0.1(IA) ^{1.5}
Tax exempt	Average	DCIA=0.1(IA) ^{1.5}
Unknown	Average	DCIA=0.1(IA) ^{1.5}
Water	Average	DCIA=0.1(IA) ^{1.5}

In the “Oxford MA MS4 year 3 drainage catchment area” shapefile, a field entitled “TotalArea” was added to the attribute table. For the “TotalArea” field, a “Calculate Geometry” function was used, in acre area (geodesic), to populate the field with acre areas of the entire associated catchment area. A “Union” function was run between the catchment area shapefile and the land cover, land use, soil type records shapefile described in the Creation of Base Shapefiles for Phosphorus and Nitrogen Calculations section. The unioned dataset was queried so that no polygons with an entry of “<Null>” for the “Catchment ID” field were shown. Only records within the catchment boundaries were displayed.

In these equations, the percentage of impervious cover for a given area is used to determine the percentage of DCIA in the same area. Thus, DCIA percent was calculated in the “DCIAPercent” field

using Field Calculator. In this calculation, the impervious percentage represented by the polygon ("ImpPercent") was raised to the power shown in the appropriate equation (already entered in the "DCIA_E" field when preparing the base shapefile) and multiplied by the factor shown (already entered in the "DCIA_M" field when preparing the base shapefile).

The Field Calculator equation was: "DCIAPercent" = ("ImpPercent" ^ "DCIA_E") * "DCIA_M".

These results were eventually summed for overall catchment totals of impervious area. Finally, the estimated acreage of DCIA for each polygon was calculated in the "DCIAAcre" field using Field Calculator. In this calculation, "DCIAPercent" was divided by 100 and multiplied by the overall catchment size ("CatchAreaAcr" or "CatchAreaA").

7. Nitrogen & Phosphorus Loading Calculation Workflow

1. Download Data:

- Pond Watersheds (from points which are included in download folders)- [StreamStats \(usgs.gov\)](#)
- 2000 Urbanized Areas - [Layer: Urbanized Areas \(ID: 4\) \(census.gov\)](#)
- 2010 Urbanized Areas - [Layer: Urbanized Areas \(ID: 1\) \(census.gov\)](#)
- 2016 Land Cover Land Use (four blocks) - [MassGIS Data: 2016 Land Cover/Land Use | Mass.gov](#)
- Hydrologic Soil Groups - [MassGIS Data: Soils SSURGO-Certified NRCS | Mass.gov](#)
- Utilities from PeopleGIS - [www.mapsonline.net/oxfordma/dpw.php](#)
 - . Open Drains
 - i. Manholes
 - ii. Inlets
 - iii. Gravity Drains
 - iv. Discharge Points
 - v. Crossings
 - vi. Crossing End Points
- Tax Parcels from Oxford, MA - Judy Lochner <jlochner@oxfordma.us>
- MassDOT Road Inventory - [Road Inventory 2020 | MassDOT Open Data Portal \(arcgis.com\)](#)
- Municipal Boundaries - [MassGIS Data: Municipalities | Mass.gov](#)
- Outfall Catchments (all pipes) - Judy Lochner <jlochner@oxfordma.us>

2. GIS Analysis:

- To get Oxford boundary, in (1.i.) properties DEF QUERY Town="Oxford"
- BATCH PAIRWISE CLIP (2.b.) areas from
 - (1.a.)
 - (1.b.)
 - (1.c.)
 - (1.d.)
 - (1.e.)
 - (1.h.)
- To get road areas belonging to State and Federal Organizations
 - In (1.h.) properties DEF QUERY "Jurisdctn" does not include the value(s) "0", "2", "H" AND "Jurisdctn" is not null
 - Overlay (2.c.i.) over (1.g.)
 - CREATE SHAPEFILE to hold state/fed road polygons
 - CREATE FEATURES to trace (1.g.) parcel boundaries containing (2.c.i.)
- To get Federal Owned Parcels:
 - In (1.g.) properties DEF QUERY "OWNER1" contains the text "UNITED STATES OF AMERICA" OR "LOC_ID" is equal to "F_551778_2870612"
- To get State Owned Parcels:

- i. In (1.g.) properties DEF QUERY "OWNER1" contains the text "COMMONWEALTH OF MASS"
- f. To get total urbanized area, UNION (2.b.ii.) and (2.b.iii.)
- g. To get single pond watersheds shapefile, UNION (2.b.i.)
- h. To get 2016 land cover land use within Oxford, UNION (2.b.iv)
- i. To get land use/land cover/hydr soil groups, outfall catchments, and pond watersheds within urbanized area
 - i. UNION (2.h.) and (2.b.v)
 - ii. BATCH PAIRWISE ERASE (2.c.), (2.d.), and (2.e.) from
 - 1. (2.j.i.)
 - 2. (1.j.)
 - 3. (2.g.)
 - iii. BATCH CLIP (2.f.) from
 - 1. (2.i.ii.1.)
 - 2. (2.i.ii.2.)
 - 3. (2.i.ii.3.)
- j. **To get Nitrogen Load Export Rate per Outfall Catchment Area**
 - i. To get outfall catchment acre area attribute in (2.i.iii.2.) table
 - 1. ADD A NEW FIELD "TotalAcres" [double]
 - 2. CALCULATE GEOMETRY [Area (geodesic), Acres, NAD83 MA Mainland Feet]
 - ii. UNION (2.i.iii.1.) and (2.j.i.)
 - iii. To get acre area attribute in (2.j.ii.) table
 - 1. ADD A NEW FIELD "Acres" [double]
 - 2. CALCULATE GEOMETRY [Area (geodesic), Acres, NAD83 MA Mainland Feet]
 - iv. To get impervious acre area in (2.j.iii.) table
 - 1. ADD A NEW FIELD called "ImpervAcres" [double]
 - 2. CALCULATE FIELD "ImpervAcres" = 0
 - 3. SELECT BY ATTRIBUTES Where "COVERNAME" is equal to "Impervious"
 - 4. CALCULATE GEOMETRY [Area (geodesic), Acres, NAD83 MA Mainland Feet]
 - v. To get an estimate of percent of catchment area's directly connected impervious area represented by a record in (2.j.iv.) table
 - 1. ADD A NEW FIELD called "DCIAPercent" [double]
 - 2. CALCULATE FIELD "DCIAPercent" = DCIAPercent.CAL
 - vi. To get an estimate the area of directly connected impervious area associated with a record in (2.j.v.) table
 - 1. ADD A NEW FIELD called "DCIAAcres" [double]
 - 2. CALCULATE FIELD "DCIAAcres" = ("DCIAPercent"/100) * "TotalAcres"
 - vii. To get the numerical nitrogen loading rate assigned to a record. The value originates from Table 1 in Attachment 1 of Appendix H of the 2016 Massachusetts Small MS4 General Permit. A/D Hydrologic Soil Group was given a value of (A value * D value)/2. B/D Hydrologic Soil Group was given a value of (B value * D value)/2. Water was given no value.
 - 1. ADD A NEW FIELD called "NLER" [double]
 - 2. CALCULATE FIELD "NLER" = 2016 Land Cover Land Use TO NLER.CAL
 - viii. To get the estimated nitrogen load from a record in (2.j.vii.) table
 - 1. ADD A NEW FIELD called "NLoadLbYr" [double]
 - 2. CALCULATE FIELD "NLoadLbYr" = "NLER" * "Acres"
 - ix. To get Nitrogen Load Export Rate per Outfall Catchment Area table
 - 1. PAIRWISE DISSOLVE (2.j.viii.) Dissolve_Field = "Outfall_ID" and Statistics Fields = ["Acres" : SUM], ["ImpervAcres" : SUM], ["DCIAAcres" : SUM], ["NLoadLbYr" : SUM]

k. To get Phosphorus Load Export Rate per Pond Watershed Area

- i. To get pond watershed acre area attribute in (2.i.iii.3.) table
 1. ADD A NEW FIELD "TotalAcres" [double]
 2. CALCULATE GEOMETRY [Area (geodesic), Acres, NAD83 MA Mainland Feet]
- ii. UNION (2.i.iii.1.) and (2.k.i.)
- iii. To get acre area attribute in (2.k.ii.) table
 1. ADD A NEW FIELD "Acres" [double]
 2. CALCULATE GEOMETRY [Area (geodesic), Acres, NAD83 MA Mainland Feet]
- iv. To get impervious acre area in (2.k.iii.) table
 1. ADD A NEW FIELD called "ImpervAcres" [double]
 2. CALCULATE FIELD "ImpervAcres" = 0
 3. SELECT BY ATTRIBUTES Where "COVERNAME" is equal to "Impervious"
 4. CALCULATE GEOMETRY [Area (geodesic), Acres, NAD83 MA Mainland Feet]
- v. To get an estimate of percent of watershed's directly connected impervious area represented by a record in (2.k.iv.) table
 1. ADD A NEW FIELD called "DCIAPercent" [double]
 2. CALCULATE FIELD "DCIAPercent" = DCIAPercent.CAL
- vi. To get an estimate the area of directly connected impervious area associated with a record in (2.k.v.) table
 1. ADD A NEW FIELD called "DCIAAcres" [double]
 2. CALCULATE FIELD "DCIAAcres" = ("DCIAPercent"/100) * "TotalAcres"
- vii. To get the numerical phosphorus loading rate assigned to a record. The value originates from MassGIS's "2016 Massachusetts Small MS4 Permit Pollutant Loading Export Rates applied to the 2016 Massachusetts Land Use/Land Cover GIS Dataset" ([download \(mass.gov\)](#))
 1. ADD A NEW FIELD called "PLER" [double]
 2. CALCULATE FIELD "PLER" = 2016 Land Cover Land Use TO PLER.CAL
- viii. To get the estimated phosphorus load from a record in (2.k.vii.) table
 1. ADD A NEW FIELD called "PLoadLbYr" [double]
 2. CALCULATE FIELD "PLoadLbYr" = "PLER" * "Acres"
- ix. To get Phosphorus Load Export Rate per Pond Watershed Area table
 1. PAIRWISE DISSOLVE (2.j.viii.) Dissolve_Field = "Outfall_ID" and Statistics Fields = ["Acres" : SUM], ["ImpervAcres" : SUM], ["DCIAAcres" : SUM], ["PLoadLbYr" : SUM]

Appendix B – Outfall Catchment Calculations for Impervious Area, DCIA, & Nitrogen Load

OBJECTID_1	Outfall_ID	SUM_Acres	SUM_ImpervAcres	SUM_DCIAcres	SUM_NLoadLbYr	Percent Impervous	Percent DCIA
10	OF-108	771.82	65.44	8.70	2019.94	8.48	1.13
93	OF-192	726.48	16.91	4.06	1376.65	2.33	0.56
140	OF-270	160.68	18.32	4.85	617.62	11.40	3.02
76	OF-173	176.95	7.55	0.72	476.00	4.27	0.40
44	OF-141	140.21	10.71	1.15	371.96	7.64	0.82
151	OF-281	94.50	3.76	0.20	269.33		
68	OF-166	99.83	8.54	1.18	231.52	8.55	1.18
40	OF-138	92.91	6.05	0.69	181.11		
217	OF-98	45.96	10.85	3.25	163.56	23.61	7.07
172	OF-44	50.17	1.78	0.39	122.79		
147	OF-278	37.63	1.68	0.25	114.09		
61	OF-158	13.37	7.07	1.88	111.14	52.91	14.04
37	OF-134	14.83	6.90	2.24	99.67	46.52	15.14
150	OF-280	32.69	1.19	0.16	93.05		
45	OF-142	12.67	6.14	2.39	88.58	48.47	18.85
67	OF-164	7.26	5.74	2.95	84.44		
134	OF-264	20.34	1.70	0.31	75.64		
6	OF-104	18.72	5.02	1.85	74.96		
148	OF-279	11.76	3.80	1.58	72.19		
212	OF-93	27.39	3.07	0.63	71.90		
85	OF-183	14.40	3.00	0.66	70.67		
94	OF-193	20.12	0.58	0.05	67.30		
83	OF-181	17.30	1.64	0.25	64.13		
1	OF-1	14.31	3.32	1.45	59.13		
208	OF-9	13.99	3.71	1.02	57.19		
121	OF-249	14.47	1.81	0.25	56.18		
193	OF-73	8.43	2.81	0.97	55.10		
38	OF-135	10.70	3.73	1.35	54.67		
194	OF-74	9.81	2.55	1.41	53.99		
41	OF-139	24.99	1.83	0.25	53.57		
82	OF-180	15.91	0.83	0.11	52.59		
47	OF-144	22.00	1.95	0.42	51.58		
154	OF-286	12.20	3.40	1.29	50.53		
206	OF-88	15.16	1.64	0.28	48.66		
55	OF-152	15.44	2.69	0.79	46.84		
135	OF-265	11.82	1.00	0.18	43.13		
192	OF-72	26.84	0.80	0.10	42.70		
53	OF-150	20.26	1.42	0.27	42.65		
58	OF-155	22.35	1.96	0.37	39.19		
66	OF-162	4.27	2.32	1.26	35.92		
24	OF-121	7.01	2.36	0.93	34.73		
201	OF-82	12.76	1.48	0.36	34.39		
177	OF-57	13.23	1.24	0.21	33.99		
86	OF-184	12.34	0.36	0.04	33.89		
153	OF-285	8.65	1.71	0.86	32.47		
65	OF-161	3.39	1.99	0.77	31.90		
117	OF-240	11.08	1.91	0.44	31.58		
19	OF-117	5.84	1.97	0.67	30.74		
13	OF-110	6.97	2.07	0.80	30.59		
216	OF-97	9.36	1.91	0.61	29.17		
11	OF-109	7.85	1.93	0.68	28.99		
3	OF-100	8.68	1.83	0.59	27.85		
84	OF-182	6.25	1.54	0.46	27.77		
17	OF-115	7.05	1.22	0.25	27.31		
49	OF-146	6.19	0.90	0.24	26.94		
114	OF-229	7.22	1.73	0.59	26.01		
32	OF-13	5.91	1.43	0.44	25.35		
146	OF-277	6.71	1.43	0.35	25.25		
139	OF-27	4.50	1.69	0.74	24.66		
30	OF-128	5.00	1.53	0.39	24.28		
4	OF-101	7.43	1.58	0.52	24.07		
2	OF-10	6.76	1.21	0.33	23.72		
137	OF-267	2.98	1.56	0.79	23.71		
92	OF-191	5.46	0.99	0.23	23.55		
101	OF-202	5.18	1.58	0.60	23.32		
12	OF-11	18.41	0.71	0.08	23.22		
132	OF-261	5.16	1.33	0.40	22.59		
189	OF-69	7.17	1.07	0.31	22.43		
46	OF-143	10.41	0.73	0.13	21.88		
215	OF-96	4.49	1.21	0.34	20.76		
209	OF-90	6.61	0.99	0.29	20.73		
81	OF-18	5.87	1.26	0.37	20.57		
136	OF-266	5.84	0.65	0.13	20.21		
109	OF-212	2.15	1.30	0.65	19.30		
89	OF-189	5.69	0.48	0.10	19.23		
48	OF-145	4.40	1.05	0.38	18.85		
188	OF-68	4.20	1.02	0.72	18.18		
131	OF-260	5.96	0.67	0.13	18.13		
62	OF-159	5.10	0.49	0.10	18.00		
213	OF-94	6.91	0.74	0.17	17.86		

	Acres
Sum Acres Analyzed	3,421.93
Sum Impervious Acres	336.01
Sum DCIA	87.15

	lb per yr
SUM N-load	9,703.81
Total top 5 N-load	4,862.17

KEY
Top 10 by Impervious Area
Top 5 by N-load (lb/yr)

42	OF-14	6.09	0.92	0.19	17.78		
100	OF-201	3.18	1.19	0.52	17.43		
28	OF-126	2.98	1.08	0.41	16.98		
15	OF-112	5.23	1.10	0.36	16.69		
158	OF-29	5.29	1.07	0.34	16.35		
39	OF-137	7.33	0.54	0.08	16.18		
22	OF-12	8.23	0.68	0.11	16.03		
211	OF-92	4.62	0.80	0.23	15.90		
77	OF-174	8.01	0.41	0.05	15.88		
79	OF-176	3.90	0.80	0.28	15.02		
155	OF-287	6.29	0.57	0.11	14.96		
73	OF-170	2.87	0.79	0.29	14.87		
59	OF-156	5.63	0.95	0.28	14.84		
171	OF-43	2.62	0.90	0.38	14.81		
96	OF-195	3.25	0.45	0.12	14.69		
34	OF-131	5.53	0.80	0.19	14.63		
214	OF-95	5.24	0.89	0.29	14.46		
205	OF-87	1.91	0.82	0.41	14.18		
69	OF-167	4.78	0.14	0.02	14.07		
145	OF-276	5.86	0.82	0.21	13.94		
199	OF-8	5.24	0.71	0.13	13.86		
191	OF-70	3.32	0.70	0.17	13.59		
175	OF-55	1.74	0.85	0.39	13.58		
167	OF-4	5.78	0.79	0.20	13.57		
178	OF-59	6.25	0.47	0.15	13.52		
5	OF-102	3.18	0.91	0.34	13.46		
162	OF-33	2.25	0.62	0.19	13.30		
163	OF-35	2.74	0.82	0.35	12.51		
97	OF-196	3.34	0.50	0.08	12.47		
218	OF-99	3.54	0.82	0.28	12.42		
78	OF-175	5.10	0.56	0.10	12.31		
165	OF-37	5.42	0.73	0.19	11.88		
7	OF-105	3.92	0.76	0.25	11.67		
182	OF-62	2.45	0.49	0.34	11.67		
88	OF-188	1.83	0.61	0.30	11.56		
161	OF-32	3.32	0.76	0.25	11.42		
169	OF-41	8.02	0.64	0.14	11.24		
31	OF-129	1.04	0.73	0.44	11.01		
43	OF-140	4.18	0.49	0.11	10.75		
207	OF-89	1.89	0.65	0.30	10.62		
75	OF-172	3.04	0.20	0.04	10.55		
210	OF-91	2.75	0.54	0.19	10.41		
8	OF-106	3.65	0.64	0.22	10.07		
197	OF-77	3.54	0.11	0.01	9.79		
195	OF-75	3.13	0.17	0.05	9.57		
63	OF-16	2.88	0.45	0.13	9.15		
29	OF-127	2.12	0.61	0.24	9.10		
196	OF-76	3.55	0.05	0.00	9.07		
204	OF-85	1.81	0.53	0.28	9.00		
104	OF-205	0.91	0.56	0.44	8.33		
90	OF-19	2.20	0.55	0.21	8.20		
106	OF-209	1.82	0.28	0.08	8.20		
123	OF-251	1.69	0.28	0.09	8.18		
198	OF-78	0.90	0.55	0.38	8.15		
91	OF-190	2.59	0.17	0.03	8.14		
99	OF-2	1.83	0.53	0.20	7.82		
70	OF-168	1.73	0.33	0.11	7.75		
157	OF-289	2.98	0.49	0.14	7.70		
200	OF-81	1.51	0.46	0.23	7.69		
72	OF-17	1.66	0.42	0.18	7.37		
51	OF-149	3.55	0.23	0.04	7.23		
180	OF-60	2.43	0.12	0.02	7.06		
113	OF-227	1.30	0.31	0.11	6.77		
57	OF-154	0.82	0.45	0.27	6.52		
14	OF-111	1.45	0.43	0.18	6.36		
103	OF-204	0.51	0.44	0.30	6.26		
181	OF-61	1.49	0.23	0.06	6.20		
21	OF-119	1.08	0.25	0.12	6.00		
20	OF-118	0.57	0.37	0.30	5.88		
166	OF-38	1.26	0.23	0.07	5.76		
184	OF-64	1.25	0.33	0.12	5.71		
183	OF-63	1.43	0.19	0.05	5.63		
71	OF-169	1.50	0.22	0.08	5.50		
33	OF-130	0.65	0.31	0.20	5.45		
60	OF-157	0.75	0.35	0.16	5.06		
170	OF-42	1.34	0.28	0.07	4.97		
25	OF-122	2.02	0.30	0.09	4.76		
115	OF-23	3.92	0.00	0.00	4.70		
54	OF-151	0.80	0.29	0.15	4.68		
74	OF-171	0.75	0.29	0.15	4.59		
179	OF-6	2.60	0.27	0.06	4.50		

138	OF-269	1.70	0.19	0.05	4.43		
118	OF-242	0.61	0.29	0.16	4.22		
16	OF-113	0.68	0.29	0.11	4.16		
159	OF-3	0.84	0.28	0.13	4.15		
87	OF-187	0.85	0.16	0.05	3.87		
9	OF-107	0.56	0.27	0.13	3.85		
142	OF-272	0.91	0.20	0.07	3.68		
160	OF-31	0.60	0.25	0.12	3.65		
122	OF-250	0.90	0.09	0.03	3.49		
129	OF-258	0.42	0.15	0.07	2.95		
156	OF-288	1.07	0.17	0.06	2.93		
144	OF-274	0.52	0.18	0.08	2.77		
143	OF-273	0.48	0.18	0.10	2.67		
130	OF-259	0.78	0.02	0.00	2.60		
52	OF-15	0.47	0.16	0.07	2.36		
173	OF-5	0.49	0.16	0.07	2.30		
149	OF-28	0.42	0.16	0.07	2.27		
56	OF-153	0.52	0.15	0.06	2.26		
27	OF-124	0.42	0.13	0.06	1.97		
105	OF-207	0.44	0.06	0.01	1.79		
35	OF-132	0.16	0.12	0.07	1.75		
133	OF-263	0.65	0.08	0.02	1.66		
23	OF-120	0.23	0.07	0.04	1.45		
120	OF-248	0.18	0.06	0.03	1.22		
168	OF-40	0.11	0.09	0.07	1.22		
112	OF-226	0.14	0.08	0.05	1.18		
116	OF-233	0.25	0.07	0.03	1.10		
50	OF-147	0.10	0.08	0.07	1.10		
110	OF-216	0.07	0.07	0.06	1.06		
119	OF-243	0.06	0.06	0.05	0.79		
187	OF-67	0.06	0.06	0.05	0.78		
202	OF-83	0.12	0.05	0.03	0.73		
107	OF-21	0.55	0.00	0.00	0.71		
95	OF-194	0.14	0.02	0.01	0.65		
64	OF-160	0.06	0.04	0.04	0.65		
203	OF-84	0.13	0.04	0.02	0.65		
26	OF-123	0.19	0.04	0.02	0.61		
185	OF-65	0.04	0.04	0.04	0.58		
36	OF-133	0.04	0.04	0.04	0.57		
164	OF-36	0.12	0.04	0.01	0.53		
152	OF-284	0.14	0.03	0.01	0.46		
186	OF-66	0.03	0.03	0.03	0.41		
190	OF-7	0.03	0.02	0.02	0.32		
126	OF-254	0.01	0.01	0.01	0.19		
128	OF-257	0.01	0.01	0.01	0.18		
127	OF-256	0.01	0.01	0.01	0.18		
111	OF-22	0.26	0.00	0.00	0.16		
98	OF-198	0.01	0.01	0.01	0.15		
102	OF-203	0.02	0.01	0.01	0.14		
108	OF-211	0.01	0.00	0.00	0.07		
141	OF-271	0.02	0.00	0.00	0.03		
18	OF-116	0.00	0.00	0.00	0.03		
80	OF-177	0.00	0.00	0.00	0.02		
124	OF-252	0.00	0.00	0.00	0.02		
125	OF-253	0.00	0.00	0.00	0.01		
174	OF-54	0.00	0.00	0.00	0.01		
176	OF-56	0.00	0.00	0.00	0.00		

Appendix C – Outfall Screening Data

facilityid	insp_id	category	insp_date	insp_by	comments	flow_desc	submerged	ht_abv_out	dp_observ	color	color_sev	floatables	float_sev	odor	oder_sev	turbidity	dns_observ	color_dns	oth_observ	amon_kit	amon_res	spec_cond	salinity	chlor_kit	fc_result	tc_result	cc_result	deter_surf	ph_kit	ph_result	airtemp	watertemp	do_result	comm_fld_s	amon_lab	ecoli_lab	fcoli_lab	detvars_lab	phos_lab
OF-13	DISIN-1	Dry	2019-08-07	DL	Incorrect key for lock	None	No																																
OF-14	DISIN-2	Dry	2019-08-07	DL	Logs, rocks, lawn trimmings	None																																	
OF-273	DISIN-6	Dry	2019-08-12	DL		None																																	
OF-274	DISIN-5	Dry	2019-08-12	DL		None	No																																
OF-275	DISIN-4	Dry	2019-08-12	DL	Severely overgrown, could not view.	None																																	
OF-288	DISIN-3	Dry	2019-08-12	DL	Overgrown	None	No																																
OF-3	DISIN-8	Dry	2019-08-12	DL		None	No																																
OF-4	DISIN-7	Dry	2019-08-12	DL		None	No																																
OF-135	DISIN-10	Dry	2019-08-13	DL		None	No																																
OF-18	DISIN-19	Dry	2019-08-13	DL	In need of maintenance overgrown	None																																	
OF-20	DISIN-17	Dry	2019-08-13	DL	Pipe is hidden under rocks that do not disrupt drainage	None	No																																
OF-21	DISIN-18	Dry	2019-08-13	DL	Excessive amount of Japanese knotweed make outfall in accessible	None																																	
OF-22	DISIN-16	Dry	2019-08-13	DL	Directly across from drain, excellent condition	None	No																																
OF-23	DISIN-15	Dry	2019-08-13	DL		None	No																																
OF-24	DISIN-14	Dry	2019-08-13	DL	Perfect condition	None	No																																
OF-25	DISIN-13	Dry	2019-08-13	DL	Some sediment and mud buildup in opening	None																																	
OF-86	DISIN-12	Dry	2019-08-13	DL	Good amount of sediment in pipe	None	No																																
OF-100	DISIN-32	Dry	2019-08-30	DL		None	No																																
OF-102	DISIN-25	Dry	2019-08-30	DL	In fenced in backyard	None	No																																
OF-103	DISIN-24	Dry	2019-08-30	DL	Unable to locate	None	No																																
OF-104	DISIN-29	Dry	2019-08-30	DL	Very well maintained	None	No																																
OF-106	DISIN-28	Dry	2019-08-30	DL	Safe to assume during heavy rain this outfall has quite heavy flow due to the obvious path the water takes towards river	None	No																																
OF-107	DISIN-27	Dry	2019-08-30	DL	A lot of erosion	None	No																																
OF-108	DISIN-26	Dry	2019-08-30	DL		None	No																																
OF-110	DISIN-31	Dry	2019-08-30	DL		None	No																																
OF-111	DISIN-30	Dry	2019-08-30	DL	Lots of sediment in front of drain. Lady who's house it's abuts is very	None	No																																
OF-114	DISIN-20	Dry	2019-08-30	DL	Overgrown	None	No																																
OF-115	DISIN-21	Dry	2019-08-30	DL	Gate broken open, excessive vegetation	None	No																																
OF-116	DISIN-23	Dry	2019-08-30	DL	All pitfalls dump in fenced in area with forced open gate	None	No																																
OF-117	DISIN-22	Dry	2019-08-30	DL	Excessive vegetation same broken in area	None	No																																
OF-124	DISIN-40	Dry	2019-08-30	DL	Brush and tree limbs make it inaccessible, very steep incline	None																																	
OF-125	DISIN-41	Dry	2019-08-30	DL		None	No																																
OF-129	DISIN-33	Dry	2019-08-30	DL	Trickle from pipe; pond level high	Trickling	No																																
OF-130	DISIN-34	Dry	2019-08-30	DL		None	No																																
OF-138	DISIN-35	Dry	2019-08-30	DL	Lots of rose bushes	None	No																																
OF-140	DISIN-42	Dry	2019-08-30	DL	On the opposite side of the road as shown in map	None	No																																
OF-155	DISIN-36	Dry	2019-08-30	DL		None	No																																
OF-156	DISIN-37	Dry	2019-08-30	DL		None	No																																
OF-157	DISIN-39	Dry	2019-08-30	DL																																			

Appendix D – BMP Assessment Methodology

BMP Site Assessment

1.1 Methodology

In the fifth year of the Oxford MS4 report, Nitsch Engineering conducted a comprehensive evaluation of subdivisions of town-owned parcels to identify and prioritize potential stormwater BMP locations. Unlike previous years, this year's methodology did not involve a scoring system. Instead, the focus was on a detailed analysis of various criteria that could influence the success and efficiency of a BMP on a town-owned parcel.

Each town-owned parcel was evaluated based on several criteria, some of which were used for informational purposes only. These criteria played a significant role in decision-making processes related to BMP selection and design.

The phosphorus or nitrogen loading rates were calculated for individual BMP watersheds, instead of those of the encompassing town-owned parcel. The watershed was determined using the ArcGIS Pro "watershed" function, with a MassGIS Lidar DEM serving as a base for flow direction. Each BMP area was determined through a process of subdividing town-owned parcels by hydrologic soil group, depth to groundwater, and surface slope.

For local decision-making, the considerations in this analysis can be further supplemented and fine-tuned based on local priorities. For some areas, localized access and education could be an important additional consideration.

The stormwater retrofit prioritization will continue to be updated in future Permit years to adapt to local efforts in pursuit of the MS4 permit. This year's methodology builds upon the previous years' work, incorporating lessons learned and refining the process for identifying and prioritizing potential BMP areas.

1.2 Data Sources

- Pond Watersheds - StreamStats (usgs.gov)
- 2016 Land Cover Land Use (four blocks) - MassGIS Data: 2016 Land Cover/Land Use | Mass.gov
- Mass.gov
- Building Footprints - MassGIS Data: Building Structures (2-D) | Mass.gov
- Train Lines - MassGIS Data: Trains | Mass.gov
- Wetlands - MassGIS Data: MassDEP Wetlands (2005) | Mass.gov
- Hydrologic Soil Groups - MassGIS Data: Soils SSURGO-Certified NRCS | Mass.gov
- Tax Parcels from Oxford, MA - Judy Lochner jlochner@oxfordma.us
- LiDAR DEM - 2015 USGS Lidar: Maine & Massachusetts QL1 & QL2, 2013 - 2014 USGS Lidar: Post-Sandy (MA, NH, RI), and 2010 FEMA Lidar: MA & RI

<u>ATTRIBUTE TYPE</u>	<u>DESCRIPTION</u>	<u>CODE (IF APPLICABLE)</u>
LOC_ID_BMPLocations	This attribute is a unique identifier for each BMP location. It was created after identifying the best BMP areas within each town owned parcel, then dissolving together any identical BMP types that touched boundaries. within the parcel. The unique identifier is made up of the parcel's LOC_ID with "_**" count number after it. Besides LOC_ID and BMP, all attributes are uniquely calculated for each LOC_ID_BMPLocations.	<pre> # Calculates a sequential number # More calculator examples at esriurl.com/CalculatorExamples rec=0 def SequentialNumber(): global rec pStart = 1 pInterval = 1 if (rec == 0): rec = pStart else: rec = rec + pInterval return rec uniqueList = [] def isDuplicate(inValue): if inValue in uniqueList: iteration = SequentialNumber() if iteration > 9: return inValue + " " + str(iteration) else: return inValue + " _0" + str(iteration) else: global rec rec=0 iteration = SequentialNumber() uniqueList.append(inValue) return inValue + "_0" + str(iteration) </pre>
LOC_ID	This attribute is the unique identified for each town owned parcel that the potential BMP areas are within. It was created by MassGIS.	
BMP	This attribute is the best fitting BMP type for the area. It was calculated by first erasing any areas within town owned parcels that were overlapped by a building, within 25ft of a train line, or within 25ft of a Wetland or stream. These three variables would make a BMP overly difficult to construct. Next, town owned parcels were subdivided by hydrologic soil group (HSG), 100sqrft slope area, and depth to groundwater area. Type 1 BMPs fit best where HSG is A, B, or C, slope is <5%, and depth to groundwater is >= 4 ft. Type 2 BMPs fit best where HSG is unknown, A/D, B/D, C/D, or D, slope is <5%, and depth to groundwater is <4ft or unknown. Any areas with slopes >5% in an averaged 100sqrft area where not given a potential BMP category as it would be overly expensive to grade the slope to a manageable %.	
BMP Area - Square Ft	This attribute is the square foot area of the unique potential BMP area within the town owned parcel.	
BMP Volume - Cubic Ft	This attribute is the cubic foot volume of the unique potential BMP area within the town owned parcel. All BMP's were assumed to have a 2ft depth.	
Hydrologic Soil Group With Largest Area in BMP	This attribute is the hydrologic soil group with the largest area within each potential BMP area. Some potential BMP areas contained more than one hydrologic soil group within them. Later calculations rely on this attribute to determine which subtype of BMP Type 1 is most appropriate at the potential BMP area.	

Watershed Area - Acres	This attribute is the area in acres of each potential BMP area's watershed. ArcGIS Pro's watershed tool was used in association with an elevation DEM made by combining 2015 USGS Lidar: Maine & Massachusetts QL1 & QL2, 2013 - 2014 USGS Lidar: Post-Sandy (MA, NH, RI), and 2010 FEMA Lidar: MA & RI. Each potential BMP area watershed was calculated iteratively.	
Watershed Impervious Area - Acres	This attribute is the area in acres of pervious land cover within each potential BMP area's watershed. It was calculated by subdividing the watershed by the MassGIS 2016 Land Cover Land Use dataset, selecting all areas with an Impervious land cover identifier, and adding together their individual acre area values.	
Watershed Pervious Area - Acres	This attribute is the area in acres of pervious land cover within each potential BMP area's watershed. It was calculated by subdividing the watershed by the MassGIS 2016 Land Cover Land Use dataset, selecting all areas without an Impervious land cover identifier, and adding together their individual acre area values.	
Unknown Type Hydrologic Soil Group Pervious Area (Watershed) - Acres	This attribute is the area in acres of unknown hydrologic soil groups (HSG) within the pervious area of the potential BMP's watershed. It was calculated by subdividing the watershed by MassGIS's 2016 Land Cover Land Use and SSURGO Soils dataset, selecting all areas without an Impervious land cover identifier and an Unknown HSG identifier, then adding together their individual acre area values.	
A Type Hydrologic Soil Group Pervious Area (Watershed) - Acres	This attribute is the area in acres of A hydrologic soil groups (HSG) within the pervious area of the potential BMP's watershed. It was calculated by subdividing the watershed by MassGIS's 2016 Land Cover Land Use and SSURGO Soils dataset, selecting all areas without an Impervious land cover identifier and an A HSG identifier, then adding together their individual acre area values.	
A/D Type Hydrologic Soil Group Pervious Area (Watershed) - Acres	This attribute is the area in acres of A/D hydrologic soil groups (HSG) within the pervious area of the potential BMP's watershed. It was calculated by subdividing the watershed by MassGIS's 2016 Land Cover Land Use and SSURGO Soils dataset, selecting all areas without an Impervious land cover identifier and an A/D HSG identifier, then adding together their individual acre area values.	
B Type Hydrologic Soil Group Pervious Area (Watershed) - Acres	This attribute is the area in acres of B hydrologic soil groups (HSG) within the pervious area of the potential BMP's watershed. It was calculated by subdividing the watershed by MassGIS's 2016 Land Cover Land Use and SSURGO Soils dataset, selecting all areas without an Impervious land cover identifier and an B HSG identifier, then adding together their individual acre area values.	

B/D Type Hydrologic Soil Group Pervious Area (Watershed) - Acres	This attribute is the area in acres of B/D hydrologic soil groups (HSG) within the pervious area of the potential BMP's watershed. It was calculated by subdividing the watershed by MassGIS's 2016 Land Cover Land Use and SSURGO Soils dataset, selecting all areas without an Impervious land cover identifier and an B/D HSG identifier, then adding together their individual acre area values.	
C Type Hydrologic Soil Group Pervious Area (Watershed) - Acres	This attribute is the area in acres of C hydrologic soil groups (HSG) within the pervious area of the potential BMP's watershed. It was calculated by subdividing the watershed by MassGIS's 2016 Land Cover Land Use and SSURGO Soils dataset, selecting all areas without an Impervious land cover identifier and an C HSG identifier, then adding together their individual acre area values.	
C/D Type Hydrologic Soil Group Pervious Area (Watershed) - Acres	This attribute is the area in acres of C/D hydrologic soil groups (HSG) within the pervious area of the potential BMP's watershed. It was calculated by subdividing the watershed by MassGIS's 2016 Land Cover Land Use and SSURGO Soils dataset, selecting all areas without an Impervious land cover identifier and an C/D HSG identifier, then adding together their individual acre area values.	
D Type Hydrologic Soil Group Pervious Area (Watershed) - Acres	This attribute is the area in acres of D hydrologic soil groups (HSG) within the pervious area of the potential BMP's watershed. It was calculated by subdividing the watershed by MassGIS's 2016 Land Cover Land Use and SSURGO Soils dataset, selecting all areas without an Impervious land cover identifier and an D HSG identifier, then adding together their subdivision acre area values.	

<p>2 Inch Rainfall Watershed Pervious Volume Runoff - Cubic Ft</p>	<p>This attribute is the volume in cubic ft of runoff from the pervious area of the potential BMP's watershed during a 2 inch rainfall event. It was calculated by subdividing the watershed by MassGIS's 2016 Land Cover Land Use and SSURGO Soils dataset, selecting all areas without an Impervious land cover identifier, then depending on each subdivisions hydrologic soil group their area was multiplied by the associated runoff depth index (see below).</p> <pre> Soil Group : ['Unknown', 'A', 'A/D', 'B', 'B/D', 'C ,'C/D', 'D'] 2.0in rainfall : [0.69, 0.14, 1.08, 0.22, 1.08, 0.69, 0.89, 1.08] </pre> <p>Subdivision calculations finally added together for the final runoff volume.</p> <pre> def Runoff(UNKNWN, A, A_D, B, B_D, C, C_D, D): #for each rainfall option change the below rainfall depth RainfallDepth = **FILL DEPENDING ON RAINFALL EVENT, EX, 0.6** HSG_Runoff = {'Soil Group' : ['Unknown', 'A', 'A/D', 'B', 'B/D', 'C', 'C/D', 'D'], 0.1 : [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 0.2 : [0.01, 0.0, 0.02, 0.0, 0.02, 0.01, 0.02, 0.02], 0.4 : [0.03, 0.0, 0.06, 0.0, 0.06, 0.03, 0.05, 0.06], 0.5 : [0.05, 0.0, 0.09, 0.01, 0.09, 0.05, 0.07, 0.09], 0.6 : [0.06, 0.01, 0.11, 0.02, 0.11, 0.06, 0.09, 0.11], 0.8 : [0.09, 0.02, 0.16, 0.03, 0.16, 0.09, 0.13, 0.16], 1.0 : [0.12, 0.03, 0.21, 0.04, 0.21, 0.12, 0.17, 0.21], 1.2 : [0.14, 0.04, 0.39, 0.05, 0.39, 0.14, 0.27, 0.39], 1.5 : [0.39, 0.08, 0.72, 0.11, 0.72, 0.39, 0.55, 0.72], 2.0 : [0.69, 0.14, 1.08, 0.22, 1.08, 0.69, 0.89, 1.08]} RUNOFF_UNKNWN = 0 RUNOFF_A = 0 RUNOFF_A_D = 0 RUNOFF_B = 0 RUNOFF_B_D = 0 RUNOFF_C = 0 RUNOFF_C_D = 0 RUNOFF_D = 0 if UNKNWN != None and UNKNWN > 0: DepthIndex = HSG_Runoff['Soil Group'].index("Unknown") HSG_RainfallDepth = HSG_Runoff[RainfallDepth][DepthIndex] RUNOFF_UNKNWN = (HSG_RainfallDepth/12) * (UNKNWN*43560) if A != None and A > 0: DepthIndex = HSG_Runoff['Soil Group'].index("A") HSG_RainfallDepth = HSG_Runoff[RainfallDepth][DepthIndex] RUNOFF_A = (HSG_RainfallDepth/12) * (A*43560) if A_D != None and A_D > 0: DepthIndex = HSG_Runoff['Soil Group'].index("A/D") HSG_RainfallDepth = HSG_Runoff[RainfallDepth][DepthIndex] RUNOFF_A_D = (HSG_RainfallDepth/12) * (A_D*43560) if B != None and B > 0: DepthIndex = HSG_Runoff['Soil Group'].index("B") HSG_RainfallDepth = HSG_Runoff[RainfallDepth][DepthIndex] RUNOFF_B = (HSG_RainfallDepth/12) * (B*43560) if B_D != None and B_D > 0: DepthIndex = HSG_Runoff['Soil Group'].index("B/D") HSG_RainfallDepth = HSG_Runoff[RainfallDepth][DepthIndex] RUNOFF_B_D = (HSG_RainfallDepth/12) * (B_D*43560) if C != None and C > 0: DepthIndex = HSG_Runoff['Soil Group'].index("C") HSG_RainfallDepth = HSG_Runoff[RainfallDepth][DepthIndex] RUNOFF_C = (HSG_RainfallDepth/12) * (C*43560) if C_D != None and C_D > 0: DepthIndex = HSG_Runoff['Soil Group'].index("C/D") HSG_RainfallDepth = HSG_Runoff[RainfallDepth][DepthIndex] RUNOFF_C_D = (HSG_RainfallDepth/12) * (C_D*43560) if D != None and D > 0: DepthIndex = HSG_Runoff['Soil Group'].index("D") HSG_RainfallDepth = HSG_Runoff[RainfallDepth][DepthIndex] RUNOFF_D = (HSG_RainfallDepth/12) * (D*43560) RUNOFF_TOTAL = RUNOFF_UNKNWN + RUNOFF_A + RUNOFF_A_D + RUNOFF_B + RUNOFF_B_D + RUNOFF_C + RUNOFF_C_D + RUNOFF_D return RUNOFF_TOTAL </pre>
---	---

1.5 Inch Rainfall Watershed Pervious Area Runoff - Cubic Ft

This attribute is the volume in cubic ft of runoff from the pervious area of the potential BMP's watershed during a 1.5 inch rainfall event. It was calculated by subdividing the watershed by MassGIS's 2016 Land Cover Land Use and SSURGO Soils dataset, selecting all areas without an Impervious land cover identifier, then depending on each subdivisions hydrologic soil group their area was multiplied by the associated runoff depth index (see below).

```
Soil Group : [ 'Unknown', 'A', 'A/D', 'B', 'B/D', 'C'
,'C/D', 'D' ]
1.5in rainfall : [ 0.39, 0.08, 0.72, 0.11, 0.72, 0.39, 0.55,
0.72 ]
```

Subdivision calculations finally added together for the final runoff volume.

```
def Runoff(UNKNWN, A, A_D, B, B_D, C, C_D, D):
    #for each rainfall option change the below rainfall depth
    RainfallDepth = **FILL DEPENDING ON RAINFALL
    EVENT, EX, 0.6**
    HSG_Runoff = {'Soil Group': [ 'Unknown', 'A', 'A/D', 'B',
    'B/D', 'C', 'C/D', 'D'],
    0.1 : [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ],
    0.2 : [ 0.01, 0.0, 0.02, 0.0, 0.02, 0.01, 0.02, 0.02
    ],
    0.4 : [ 0.03, 0.0, 0.06, 0.0, 0.06, 0.03, 0.05, 0.06
    ],
    0.5 : [ 0.05, 0.0, 0.09, 0.01, 0.09, 0.05, 0.07,
    0.09 ],
    0.6 : [ 0.06, 0.01, 0.11, 0.02, 0.11, 0.06, 0.09,
    0.11 ],
    0.8 : [ 0.09, 0.02, 0.16, 0.03, 0.16, 0.09, 0.13,
    0.16 ],
    1.0 : [ 0.12, 0.03, 0.21, 0.04, 0.21, 0.12, 0.17,
    0.21 ],
    1.2 : [ 0.14, 0.04, 0.39, 0.05, 0.39, 0.14, 0.27,
    0.39 ],
    1.5 : [ 0.39, 0.08, 0.72, 0.11, 0.72, 0.39, 0.55,
    0.72 ],
    2.0 : [ 0.69, 0.14, 1.08, 0.22, 1.08, 0.69, 0.89,
    1.08 ]}
```

```
RUNOFF_UNKNWN = 0
RUNOFF_A = 0
RUNOFF_A_D = 0
RUNOFF_B = 0
RUNOFF_B_D = 0
RUNOFF_C = 0
RUNOFF_C_D = 0
RUNOFF_D = 0

if UNKNWN != None and UNKNWN > 0:
    DepthIndex = HSG_Runoff['Soil
Group'].index("Unknown")
    HSG_RainfallDepth =
HSG_Runoff[RainfallDepth][DepthIndex]
    RUNOFF_UNKNWN = (HSG_RainfallDepth/12) *
(UNKNWN*43560)
if A != None and A > 0:
    DepthIndex = HSG_Runoff['Soil Group'].index("A")
    HSG_RainfallDepth =
HSG_Runoff[RainfallDepth][DepthIndex]
    RUNOFF_A = (HSG_RainfallDepth/12) * (A*43560)
if A_D != None and A_D > 0:
    DepthIndex = HSG_Runoff['Soil Group'].index("A/D")
    HSG_RainfallDepth =
HSG_Runoff[RainfallDepth][DepthIndex]
    RUNOFF_A_D = (HSG_RainfallDepth/12) *
(A_D*43560)
if B != None and B > 0:
    DepthIndex = HSG_Runoff['Soil Group'].index("B")
    HSG_RainfallDepth =
HSG_Runoff[RainfallDepth][DepthIndex]
    RUNOFF_B = (HSG_RainfallDepth/12) * (B*43560)
if B_D != None and B_D > 0:
    DepthIndex = HSG_Runoff['Soil Group'].index("B/D")
    HSG_RainfallDepth =
HSG_Runoff[RainfallDepth][DepthIndex]
    RUNOFF_B_D = (HSG_RainfallDepth/12) *
(B_D*43560)
if C != None and C > 0:
    DepthIndex = HSG_Runoff['Soil Group'].index("C")
    HSG_RainfallDepth =
HSG_Runoff[RainfallDepth][DepthIndex]
    RUNOFF_C = (HSG_RainfallDepth/12) * (C*43560)
if C_D != None and C_D > 0:
    DepthIndex = HSG_Runoff['Soil Group'].index("C/D")
    HSG_RainfallDepth =
HSG_Runoff[RainfallDepth][DepthIndex]
    RUNOFF_C_D = (HSG_RainfallDepth/12) *
(C_D*43560)
if D != None and D > 0:
    DepthIndex = HSG_Runoff['Soil Group'].index("D")
    HSG_RainfallDepth =
HSG_Runoff[RainfallDepth][DepthIndex]
    RUNOFF_D = (HSG_RainfallDepth/12) * (D*43560)

    RUNOFF_TOTAL = RUNOFF_UNKNWN + RUNOFF_A +
RUNOFF_A_D + RUNOFF_B + RUNOFF_B_D + RUNOFF_C
+ RUNOFF_C_D + RUNOFF_D
    return RUNOFF_TOTAL
```

<p>1 Inch Rainfall Watershed Pervious Area Runoff - Cubic Ft</p> <p>This attribute is the volume in cubic ft of runoff from the pervious area of the potential BMP's watershed during a 1 inch rainfall event. It was calculated by subdividing the watershed by MassGIS's 2016 Land Cover Land Use and SSURGO Soils dataset, selecting all areas without an Impervious land cover identifier, then depending on each subdivisions hydrologic soil group their area was multiplied by the associated runoff depth index (see below).</p> <pre> Soil Group : ['Unknown', 'A', 'A/D', 'B', 'B/D', 'C ,'C/D', 'D'] 1.0in rainfall : [0.12, 0.03, 0.21, 0.04, 0.21, 0.12, 0.17, 0.21] </pre> <p>Subdivision calculations finally added together for the final runoff volume.</p>	<pre> def Runoff(UNKNWN, A, A_D, B, B_D, C, C_D, D): #for each rainfall option change the below rainfall depth RainfallDepth = **FILL DEPENDING ON RAINFALL EVENT, EX, 0.6** HSG_Runoff = {'Soil Group' : ['Unknown', 'A', 'A/D', 'B', 'B/D', 'C', 'C/D', 'D'], 0.1 : [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], 0.2 : [0.01, 0.0, 0.02, 0.0, 0.02, 0.01, 0.02, 0.02], 0.4 : [0.03, 0.0, 0.06, 0.0, 0.06, 0.03, 0.05, 0.06], 0.5 : [0.05, 0.0, 0.09, 0.01, 0.09, 0.05, 0.07, 0.09], 0.6 : [0.06, 0.01, 0.11, 0.02, 0.11, 0.06, 0.09, 0.11], 0.8 : [0.09, 0.02, 0.16, 0.03, 0.16, 0.09, 0.13, 0.16], 1.0 : [0.12, 0.03, 0.21, 0.04, 0.21, 0.12, 0.17, 0.21], 1.2 : [0.14, 0.04, 0.39, 0.05, 0.39, 0.14, 0.27, 0.39], 1.5 : [0.39, 0.08, 0.72, 0.11, 0.72, 0.39, 0.55, 0.72], 2.0 : [0.69, 0.14, 1.08, 0.22, 1.08, 0.69, 0.89, 1.08]} RUNOFF_UNKNWN = 0 RUNOFF_A = 0 RUNOFF_A_D = 0 RUNOFF_B = 0 RUNOFF_B_D = 0 RUNOFF_C = 0 RUNOFF_C_D = 0 RUNOFF_D = 0 if UNKNWN != None and UNKNWN > 0: DepthIndex = HSG_Runoff['Soil Group'].index("Unknown") HSG_RainfallDepth = HSG_Runoff[RainfallDepth][DepthIndex] RUNOFF_UNKNWN = (HSG_RainfallDepth/12) * (UNKNWN*43560) if A != None and A > 0: DepthIndex = HSG_Runoff['Soil Group'].index("A") HSG_RainfallDepth = HSG_Runoff[RainfallDepth][DepthIndex] RUNOFF_A = (HSG_RainfallDepth/12) * (A*43560) if A_D != None and A_D > 0: DepthIndex = HSG_Runoff['Soil Group'].index("A/D") HSG_RainfallDepth = HSG_Runoff[RainfallDepth][DepthIndex] RUNOFF_A_D = (HSG_RainfallDepth/12) * (A_D*43560) if B != None and B > 0: DepthIndex = HSG_Runoff['Soil Group'].index("B") HSG_RainfallDepth = HSG_Runoff[RainfallDepth][DepthIndex] RUNOFF_B = (HSG_RainfallDepth/12) * (B*43560) if B_D != None and B_D > 0: DepthIndex = HSG_Runoff['Soil Group'].index("B/D") HSG_RainfallDepth = HSG_Runoff[RainfallDepth][DepthIndex] RUNOFF_B_D = (HSG_RainfallDepth/12) * (B_D*43560) if C != None and C > 0: DepthIndex = HSG_Runoff['Soil Group'].index("C") HSG_RainfallDepth = HSG_Runoff[RainfallDepth][DepthIndex] RUNOFF_C = (HSG_RainfallDepth/12) * (C*43560) if C_D != None and C_D > 0: DepthIndex = HSG_Runoff['Soil Group'].index("C/D") HSG_RainfallDepth = HSG_Runoff[RainfallDepth][DepthIndex] RUNOFF_C_D = (HSG_RainfallDepth/12) * (C_D*43560) if D != None and D > 0: DepthIndex = HSG_Runoff['Soil Group'].index("D") HSG_RainfallDepth = HSG_Runoff[RainfallDepth][DepthIndex] RUNOFF_D = (HSG_RainfallDepth/12) * (D*43560) RUNOFF_TOTAL = RUNOFF_UNKNWN + RUNOFF_A + RUNOFF_A_D + RUNOFF_B + RUNOFF_B_D + RUNOFF_C + RUNOFF_C_D + RUNOFF_D return RUNOFF_TOTAL </pre>
---	---

0.8 Inch Rainfall Watershed Pervious Area Runoff - Cubic Ft

This attribute is the volume in cubic ft of runoff from the pervious area of the potential BMP's watershed during a 0.8 inch rainfall event. It was calculated by subdividing the watershed by MassGIS's 2016 Land Cover Land Use and SSURGO Soils dataset, selecting all areas without an Impervious land cover identifier, then depending on each subdivisions hydrologic soil group their area was multiplied by the associated runoff depth index (see below).

```
Soil Group : [ 'Unknown', 'A', 'A/D', 'B', 'B/D', 'C'
,'C/D', 'D' ]
0.8in rainfall : [ 0.09, 0.02, 0.16, 0.03, 0.16, 0.09, 0.13,
0.16 ]
```

Subdivision calculations finally added together for the final runoff volume.

```
def Runoff(UNKNWN, A, A_D, B, B_D, C, C_D, D):
    #for each rainfall option change the below rainfall depth
    RainfallDepth = **FILL DEPENDING ON RAINFALL
    EVENT, EX, 0.6**
    HSG_Runoff = {'Soil Group': [ 'Unknown', 'A', 'A/D', 'B',
    'B/D', 'C', 'C/D', 'D'],
    0.1 : [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ],
    0.2 : [ 0.01, 0.0, 0.02, 0.0, 0.02, 0.01, 0.02, 0.02
    ],
    0.4 : [ 0.03, 0.0, 0.06, 0.0, 0.06, 0.03, 0.05, 0.06
    ],
    0.5 : [ 0.05, 0.0, 0.09, 0.01, 0.09, 0.05, 0.07,
    0.09 ],
    0.6 : [ 0.06, 0.01, 0.11, 0.02, 0.11, 0.06, 0.09,
    0.11 ],
    0.8 : [ 0.09, 0.02, 0.16, 0.03, 0.16, 0.09, 0.13,
    0.16 ],
    1.0 : [ 0.12, 0.03, 0.21, 0.04, 0.21, 0.12, 0.17,
    0.21 ],
    1.2 : [ 0.14, 0.04, 0.39, 0.05, 0.39, 0.14, 0.27,
    0.39 ],
    1.5 : [ 0.39, 0.08, 0.72, 0.11, 0.72, 0.39, 0.55,
    0.72 ],
    2.0 : [ 0.69, 0.14, 1.08, 0.22, 1.08, 0.69, 0.89,
    1.08 ]}
```

```
RUNOFF_UNKNWN = 0
RUNOFF_A = 0
RUNOFF_A_D = 0
RUNOFF_B = 0
RUNOFF_B_D = 0
RUNOFF_C = 0
RUNOFF_C_D = 0
RUNOFF_D = 0

if UNKNWN != None and UNKNWN > 0:
    DepthIndex = HSG_Runoff['Soil
Group'].index("Unknown")
    HSG_RainfallDepth =
HSG_Runoff[RainfallDepth][DepthIndex]
    RUNOFF_UNKNWN = (HSG_RainfallDepth/12) *
(UNKNWN*43560)
if A != None and A > 0:
    DepthIndex = HSG_Runoff['Soil Group'].index("A")
    HSG_RainfallDepth =
HSG_Runoff[RainfallDepth][DepthIndex]
    RUNOFF_A = (HSG_RainfallDepth/12) * (A*43560)
if A_D != None and A_D > 0:
    DepthIndex = HSG_Runoff['Soil Group'].index("A/D")
    HSG_RainfallDepth =
HSG_Runoff[RainfallDepth][DepthIndex]
    RUNOFF_A_D = (HSG_RainfallDepth/12) *
(A_D*43560)
if B != None and B > 0:
    DepthIndex = HSG_Runoff['Soil Group'].index("B")
    HSG_RainfallDepth =
HSG_Runoff[RainfallDepth][DepthIndex]
    RUNOFF_B = (HSG_RainfallDepth/12) * (B*43560)
if B_D != None and B_D > 0:
    DepthIndex = HSG_Runoff['Soil Group'].index("B/D")
    HSG_RainfallDepth =
HSG_Runoff[RainfallDepth][DepthIndex]
    RUNOFF_B_D = (HSG_RainfallDepth/12) *
(B_D*43560)
if C != None and C > 0:
    DepthIndex = HSG_Runoff['Soil Group'].index("C")
    HSG_RainfallDepth =
HSG_Runoff[RainfallDepth][DepthIndex]
    RUNOFF_C = (HSG_RainfallDepth/12) * (C*43560)
if C_D != None and C_D > 0:
    DepthIndex = HSG_Runoff['Soil Group'].index("C/D")
    HSG_RainfallDepth =
HSG_Runoff[RainfallDepth][DepthIndex]
    RUNOFF_C_D = (HSG_RainfallDepth/12) *
(C_D*43560)
if D != None and D > 0:
    DepthIndex = HSG_Runoff['Soil Group'].index("D")
    HSG_RainfallDepth =
HSG_Runoff[RainfallDepth][DepthIndex]
    RUNOFF_D = (HSG_RainfallDepth/12) * (D*43560)

    RUNOFF_TOTAL = RUNOFF_UNKNWN + RUNOFF_A +
RUNOFF_A_D + RUNOFF_B + RUNOFF_B_D + RUNOFF_C
+ RUNOFF_C_D + RUNOFF_D
    return RUNOFF_TOTAL
```

0.6 Inch Rainfall Watershed Pervious Area Runoff - Cubic Ft

This attribute is the volume in cubic ft of runoff from the pervious area of the potential BMP's watershed during a 0.6 inch rainfall event. It was calculated by subdividing the watershed by MassGIS's 2016 Land Cover Land Use and SSURGO Soils dataset, selecting all areas without an Impervious land cover identifier, then depending on each subdivisions hydrologic soil group their area was multiplied by the associated runoff depth index (see below).

```
Soil Group : [ 'Unknown', 'A', 'A/D', 'B', 'B/D', 'C'
,'C/D', 'D' ]
0.6in rainfall : [ 0.06, 0.01, 0.11, 0.02, 0.11, 0.06, 0.09,
0.11 ]
```

Subdivision calculations finally added together for the final runoff volume.

```
def Runoff(UNKNWN, A, A_D, B, B_D, C, C_D, D):
    #for each rainfall option change the below rainfall depth
    RainfallDepth = **FILL DEPENDING ON RAINFALL
    EVENT, EX, 0.6**
    HSG_Runoff = {'Soil Group': [ 'Unknown', 'A', 'A/D', 'B',
    'B/D', 'C', 'C/D', 'D'],
    0.1 : [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ],
    0.2 : [ 0.01, 0.0, 0.02, 0.0, 0.02, 0.01, 0.02, 0.02
    ],
    0.4 : [ 0.03, 0.0, 0.06, 0.0, 0.06, 0.03, 0.05, 0.06
    ],
    0.5 : [ 0.05, 0.0, 0.09, 0.01, 0.09, 0.05, 0.07,
    0.09 ],
    0.6 : [ 0.06, 0.01, 0.11, 0.02, 0.11, 0.06, 0.09,
    0.11 ],
    0.8 : [ 0.09, 0.02, 0.16, 0.03, 0.16, 0.09, 0.13,
    0.16 ],
    1.0 : [ 0.12, 0.03, 0.21, 0.04, 0.21, 0.12, 0.17,
    0.21 ],
    1.2 : [ 0.14, 0.04, 0.39, 0.05, 0.39, 0.14, 0.27,
    0.39 ],
    1.5 : [ 0.39, 0.08, 0.72, 0.11, 0.72, 0.39, 0.55,
    0.72 ],
    2.0 : [ 0.69, 0.14, 1.08, 0.22, 1.08, 0.69, 0.89,
    1.08 ]}
```

```
RUNOFF_UNKNWN = 0
RUNOFF_A = 0
RUNOFF_A_D = 0
RUNOFF_B = 0
RUNOFF_B_D = 0
RUNOFF_C = 0
RUNOFF_C_D = 0
RUNOFF_D = 0

if UNKNWN != None and UNKNWN > 0:
    DepthIndex = HSG_Runoff['Soil
Group'].index("Unknown")
    HSG_RainfallDepth =
HSG_Runoff[RainfallDepth][DepthIndex]
    RUNOFF_UNKNWN = (HSG_RainfallDepth/12) *
(UNKNWN*43560)
if A != None and A > 0:
    DepthIndex = HSG_Runoff['Soil Group'].index("A")
    HSG_RainfallDepth =
HSG_Runoff[RainfallDepth][DepthIndex]
    RUNOFF_A = (HSG_RainfallDepth/12) * (A*43560)
if A_D != None and A_D > 0:
    DepthIndex = HSG_Runoff['Soil Group'].index("A/D")
    HSG_RainfallDepth =
HSG_Runoff[RainfallDepth][DepthIndex]
    RUNOFF_A_D = (HSG_RainfallDepth/12) *
(A_D*43560)
if B != None and B > 0:
    DepthIndex = HSG_Runoff['Soil Group'].index("B")
    HSG_RainfallDepth =
HSG_Runoff[RainfallDepth][DepthIndex]
    RUNOFF_B = (HSG_RainfallDepth/12) * (B*43560)
if B_D != None and B_D > 0:
    DepthIndex = HSG_Runoff['Soil Group'].index("B/D")
    HSG_RainfallDepth =
HSG_Runoff[RainfallDepth][DepthIndex]
    RUNOFF_B_D = (HSG_RainfallDepth/12) *
(B_D*43560)
if C != None and C > 0:
    DepthIndex = HSG_Runoff['Soil Group'].index("C")
    HSG_RainfallDepth =
HSG_Runoff[RainfallDepth][DepthIndex]
    RUNOFF_C = (HSG_RainfallDepth/12) * (C*43560)
if C_D != None and C_D > 0:
    DepthIndex = HSG_Runoff['Soil Group'].index("C/D")
    HSG_RainfallDepth =
HSG_Runoff[RainfallDepth][DepthIndex]
    RUNOFF_C_D = (HSG_RainfallDepth/12) *
(C_D*43560)
if D != None and D > 0:
    DepthIndex = HSG_Runoff['Soil Group'].index("D")
    HSG_RainfallDepth =
HSG_Runoff[RainfallDepth][DepthIndex]
    RUNOFF_D = (HSG_RainfallDepth/12) * (D*43560)

    RUNOFF_TOTAL = RUNOFF_UNKNWN + RUNOFF_A +
RUNOFF_A_D + RUNOFF_B + RUNOFF_B_D + RUNOFF_C
+ RUNOFF_C_D + RUNOFF_D
    return RUNOFF_TOTAL
```

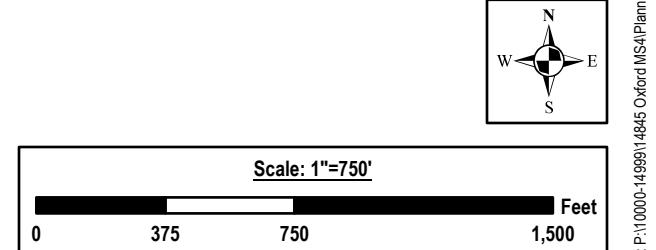
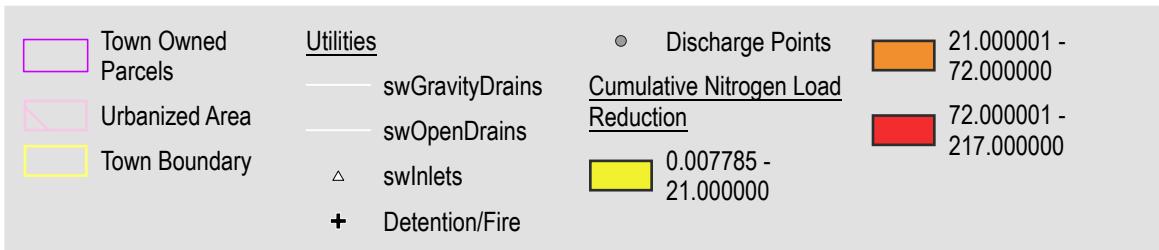
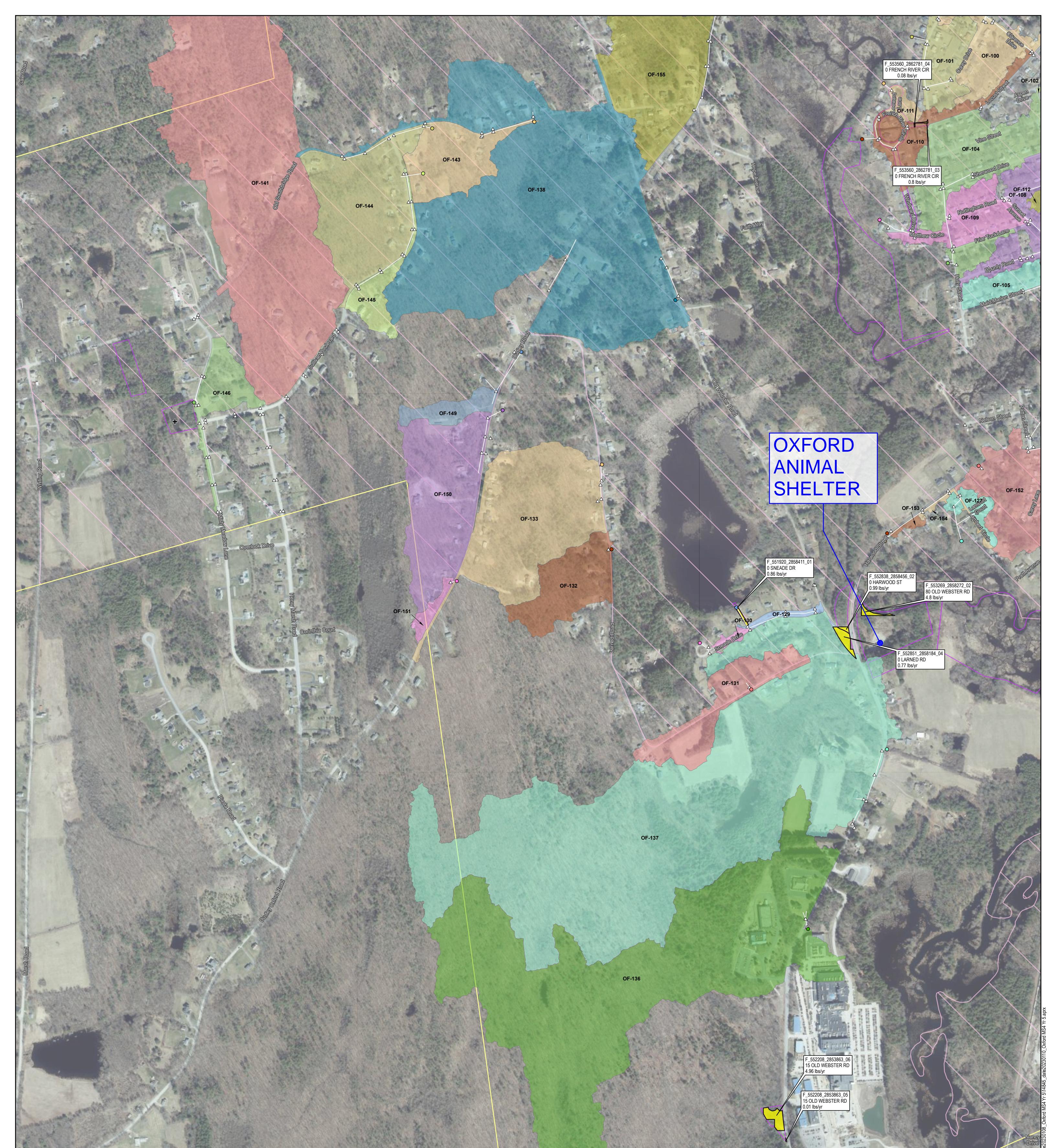
<p>BMP Capacity For Impervious Area Runoff During Largest Rainfall Allowable - Cubic Ft</p>	<p>This attribute is the potential BMP's capacity for impervious area runoff volume in cubic ft during the largest rainfall event it could contain. It uses the previously calculated Rainfall Watershed Pervious Area Runoff attributes (ex. 2.0 Inch Rainfall Watershed Pervious Area Runoff) to determine how much BMP volume is available to treat its watershed's impervious area runoff after all its watershed's pervious area runoff has been accounted for.</p> <p>An important factors in the calculation was whether the potential BMP's watershed contained any impervious area at all. By referencing the Watershed Impervious Area - Acres attribute, any BMP watersheds without impervious area were discounted from the calculation, as even with capacity there would be no impervious area for the BMP to treat.</p> <p>After calculation, the attribute contains three values:</p> <ul style="list-style-type: none"> - The largest rainfall event in which the BMP can treat all watershed runoff from pervious areas while retaining capacity for watershed runoff from impervious areas. - The volume from the watershed's impervious area runoff that the BMP could treat during the above rainfall event. - The depth of water within the BMP's volume made up by the watershed's impervious area runoff during the above rainfall event. <p>**Note: If the BMP's capacity could treat only less than 0.6in rainfall events runoff, it is flagged as such. Such a small capacity means the BMP would not be worth the effort of construction.</p>	<pre>def BMP_IA_VolumeFt_Capacity(BMP_Vol, IA_Area, PA_Vol_2inRF, PA_Vol_1pt5inRF, PA_Vol_1inRF, PA_Vol_pt8inRF, PA_Vol_pt6inRF): PA_Runoff_Volumes = {"2 Inches Rainfall":PA_Vol_2inRF, "1.5 Inches Rainfall":PA_Vol_1pt5inRF, "1 Inch Rainfall":PA_Vol_1inRF, "0.8 Inches Rainfall":PA_Vol_pt8inRF, "0.6 Inches Rainfall":PA_Vol_pt6inRF} for key, value in PA_Runoff_Volumes.items(): IA_Volume = BMP_Vol - value RF_Depth = float(key.split(" ")[0]) if IA_Area == 0 or IA_Area is None: return "No impervious area in watershed" BMP_IA_Runoff_Capacity = (IA_Volume/IA_Area)*(12/43560) if IA_Volume > 0 and IA_Area != 0: return key + ":" + str(IA_Volume) + " ft3, " + str(BMP_IA_Runoff_Capacity) + " inch IA runoff capacity" else: IA_Volume = 0 return "Rainfall capacity less than 0.6in"</pre>
--	--	---

Watershed Phosphorus Load - Lb/Yr	<p>This attribute is the potential BMP watershed's phosphorus load in pounds per year. It was calculated by subdividing the BMP's watershed by MassGIS's 2016 Land Cover Land Use and SSURGO Soils dataset, then assigning a PLER for each subdivision, referencing the EPA MS4 appendix, based on land cover, land use, and hydrologic soil group identifiers. Finally, the subdivisions are multiplied by their acre areas and then added together by BMP watershed. The result is a total yearly phosphorus load for the watershed.</p>	<pre>def PLER(HydrSoils, LU_Code, LC_Code): WaterLC = [23,22,21] WaterLU = [88] Imperv_LU_01 = [10,12] Imperv_LU_02 = [3,4,9,20,30] Imperv_LU_03 = [55] Imperv_LU_04 = [6] Imperv_LU_05 = [7] Imperv_LU_06 = [0,2,8] Imperv_LU_07 = [13,11] Perv_LC_01 = [9,10,12] Perv_LU6LC_01 = [5,6,8,13,14,15,16,17,18] Perv_LC_02 = [6,7] Perv_LU7LC_01 = [5,8] Perv_LC_03 = [5,8,13,14,15,16,17,18,19,20] HydrSoils_01 = ["A"] HydrSoils_02 = ["B", "B/D"] HydrSoils_03 = ["C", "C/D"] HydrSoils_04 = ["D"] if LC_Code in WaterLC or LU_Code in WaterLU: return 0 elif LC_Code is 2: if LU_Code in Imperv_LU_01: return 2.32 elif LU_Code in Imperv_LU_02: return 1.78 elif LU_Code in Imperv_LU_03: return 1.95 elif LU_Code in Imperv_LU_04: return 1.52 elif LU_Code in Imperv_LU_05: return 1.52 elif LU_Code in Imperv_LU_06: return 1.52 elif LU_Code in Imperv_LU_07: return 1.96 else: return 100 elif LC_Code in Perv_LC_01: return 0.13 elif LU_Code is 6 and LC_Code in Perv_LU6LC_01: return 0.13 elif LC_Code in Perv_LC_02: return 0.45 elif LU_Code is 7 and LC_Code in Perv_LU7LC_01: return 0.45 elif LC_Code in Perv_LC_03: if HydrSoils in HydrSoils_01: return 0.03 elif HydrSoils in HydrSoils_02: return 0.12 elif HydrSoils in HydrSoils_03: return 0.21 elif HydrSoils in HydrSoils_04: return 0.37 else: return 0.21 elif LC_Code is 21 or LU_Code is 88: return 0 else: return 102</pre>
--	--	---

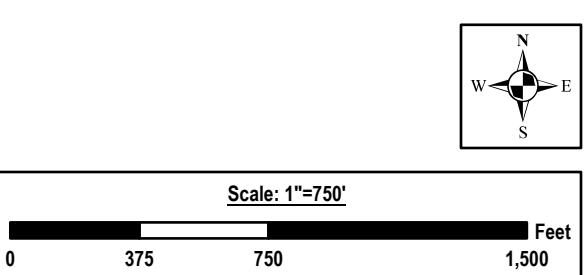
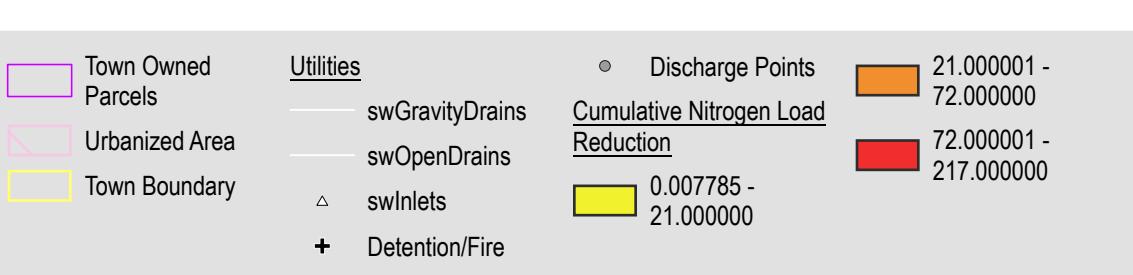
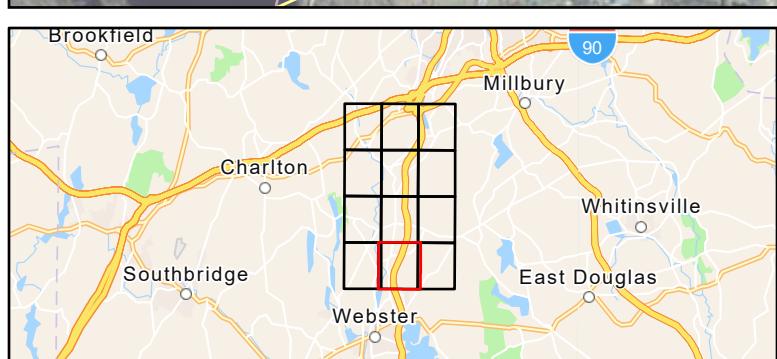
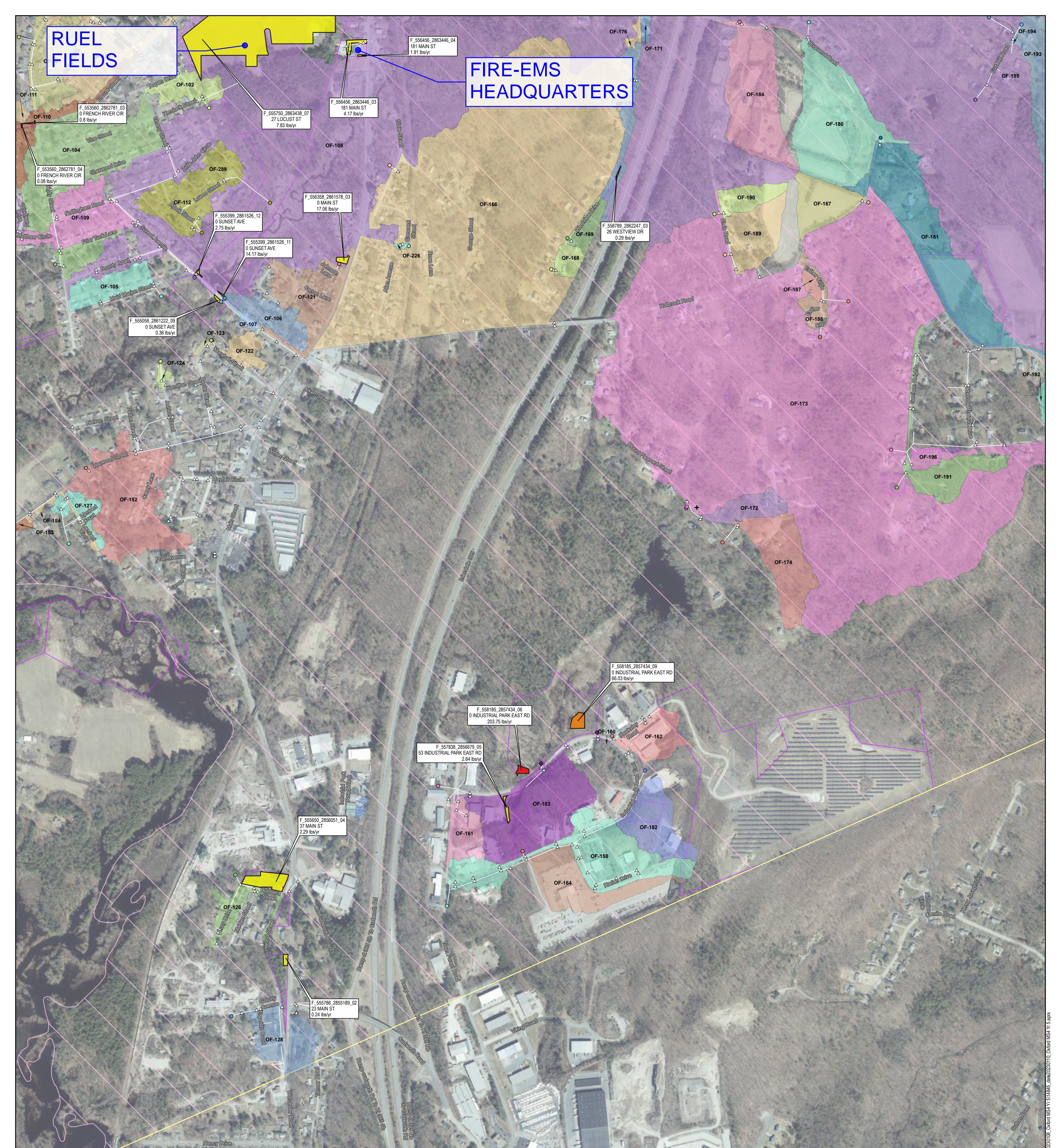
<p>BMP Phosphorus Load Reduction Ability During Largest Rainfall Allowable - %</p>	<p>This attribute is the percent of phosphorus load that the potential BMP could reduce during the largest rainfall event in which the BMP can treat all watershed runoff from pervious areas while retaining capacity for watershed runoff from impervious areas.</p> <p>For BMP Type 1, percent reduction potential is dependent on the subtype of BMP at the location. The Hydrologic Soil Group With Largest Area in BMP attribute was used to determine the likely infiltration rate of the soil beneath the BMP, and from that a Type 1 subtype could be identified. BMP Type 1 areas with a majority hydrologic soil group (HSG) A were assumed to have a 2.41 surface infiltration rate. BMP Type 1 areas with a majority hydrologic soil group (HSG) B were assumed to have a 0.52 surface infiltration rate. BMP Type 1 areas with a majority hydrologic soil group (HSG) C were assumed to have a 0.17 surface infiltration rate.</p> <p>For BMP Type 2, there were no subtypes. The percent reduction is entirely dependent on the BMP Capacity For Impervious Area Runoff During Largest Rainfall Allowable attribute.</p> <p>Using the BMP Capacity For Impervious Area Runoff During Largest Rainfall Allowable attribute in association with the BMP's type, and referencing the EPA MS4 appendix, the percent that the BMP is able to reduce phosphorus load was determined. In general, the larger the rainfall event (ex. 2in) capacity the larger the percent reduction.</p>	<pre>def CumulativePhosLoadReduction(BMP_Capacity, PLoad, BMP,HSG): BMP_Capacity_Choice = BMP_Capacity.split(" ")[0] PLoadReduction = 0 if BMP == "Type 2": Biofiltration_Phosph_Performance_Table = { "0.6": .44, "0.8": .48, "1": .53, "1.5": .58, "2": .63} for key, value in Biofiltration_Phosph_Performance_Table.items(): if key == BMP_Capacity_Choice: PLoadReduction = str(round(value * 100,1))+"%" return PLoadReduction elif BMP == "Type 1": SurfaceInfil_pt17_Phosph_Performance_Table = { "0.6": .82, "0.8": .88, "1": .92, "1.5": .97, "2": .99} SurfaceInfil_pt52_Phosph_Performance_Table = { "0.6": .87, "0.8": .92, "1": .95, "1.5": .98, "2": .99} SurfaceInfil_2pt41_Phosph_Performance_Table = { "0.6": .94, "0.8": .97, "1": .98, "1.5": 1.0, "2": 1.0} if HSG == "A": for key, value in SurfaceInfil_2pt41_Phosph_Performance_Table.items(): if key == BMP_Capacity_Choice: PLoadReduction = str(round(value * 100,1))+"%" return PLoadReduction if HSG == "B": for key, value in SurfaceInfil_pt52_Phosph_Performance_Table.items(): if key == BMP_Capacity_Choice: PLoadReduction = str(round(value * 100,1))+"%" return PLoadReduction if HSG == "C": for key, value in SurfaceInfil_pt17_Phosph_Performance_Table.items(): if key == BMP_Capacity_Choice: PLoadReduction = str(round(value * 100,1))+"%" return PLoadReduction else: return None</pre>
<p>BMP Cumulative Phosphorus Load Reduction - Lb/Yr</p>	<p>This attribute is the potential BMP's cumulative phosphorus load reduction amount in pounds per year. It was calculated by multiplying the BMP Phosphorus Load Reduction Ability During Largest Rainfall Allowable attribute by the Watershed Phosphorus Load attribute. By identifying the load reduction that the BMP's construction could provide, it is possible to do a planning level cost analysis to determine which BMP areas would provide the most benefit to phosphorus load reduction within MS4 pond watersheds.</p> <p>**Note: The calculation assumes that a BMP would be constructed that covers the entire original area. If not the case, the BMP would need to have a depth larger than 2ft to make up for the volume decreased by a smaller than calculated surface area. Runoff would additionally need to be routed to the BMPs location, as the watershed calculated is for the entire original BMP area.</p>	

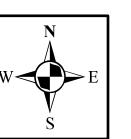
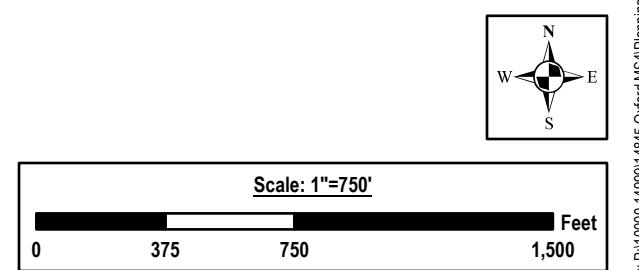
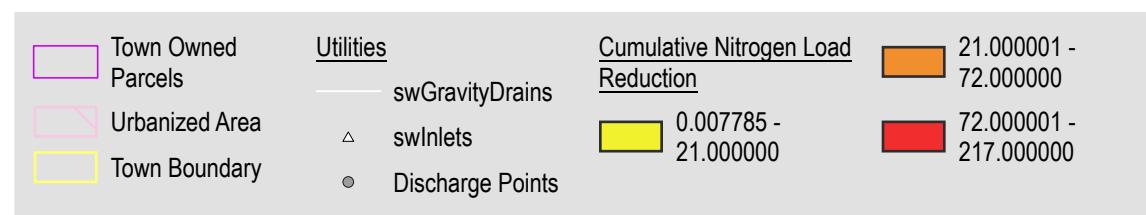
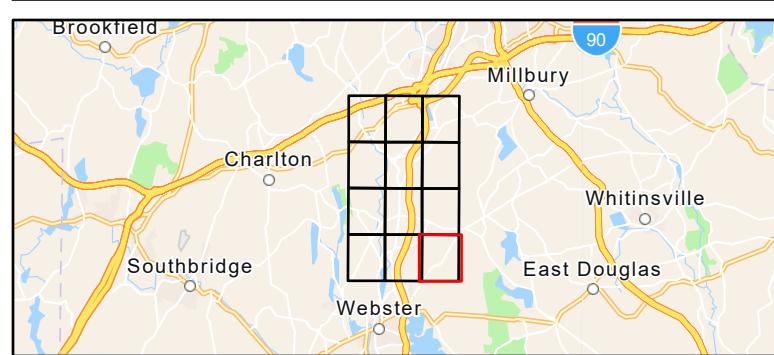
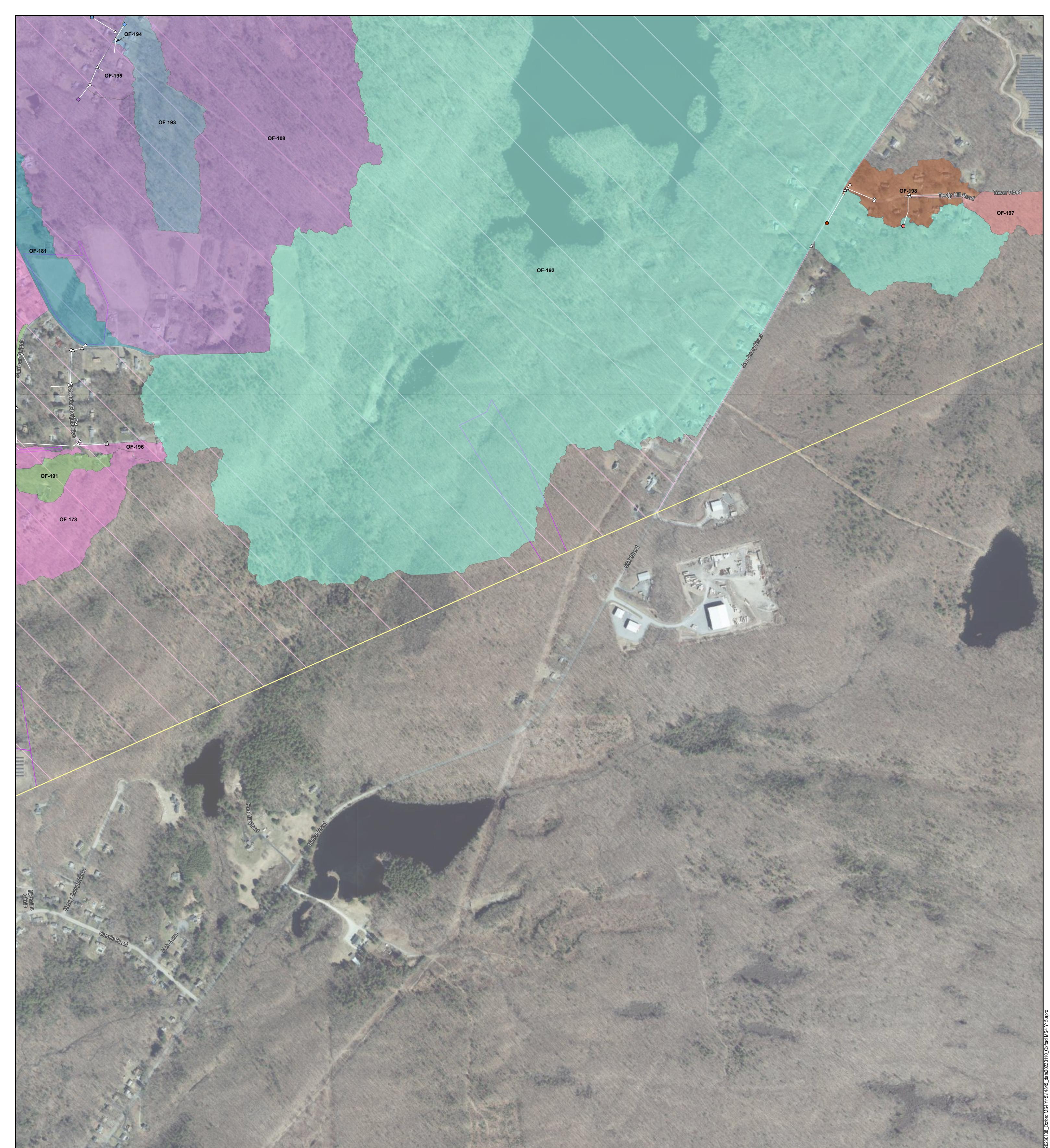
Watershed Nitrogen Load - Lb/Yr	<p>This attribute is the potential BMP watershed's nitrogen load in pounds per year. It was calculated by subdividing the BMP's watershed by MassGIS's 2016 Land Cover Land Use and SSURGO Soils dataset, then assigning a NLER for each subdivision, referencing the EPA MS4 appendix, based on land cover, land use, and hydrologic soil group identifiers. Finally, the subdivisions are multiplied by their acre areas and then added together by BMP watershed. The result is a total yearly nitrogen load for the watershed.</p>	<pre>def NLER(LC_Code,LU_Code,HydrSoil): Impervious = [2] WaterLC = [23,22,21] WaterLU = [88] HydrSoils_01 = ["A", "A/D"] HydrSoils_02 = ["B", "B/D"] HydrSoils_03 = ["C"] HydrSoils_06 = ["C/D"] HydrSoils_04 = ["D"] HydrSoils_05 = ["", "", "None"] if LC_Code in WaterLC or LU_Code in WaterLU: return 0 elif LC_Code in Impervious: return 14.1 else: if HydrSoil in HydrSoils_05: return 3.0 elif HydrSoil in HydrSoils_01: return 0.3 elif HydrSoil in HydrSoils_02: return 1.2 elif HydrSoil in HydrSoils_03: return 2.4 elif HydrSoil in HydrSoils_06: return 3.0 elif HydrSoil in HydrSoils_04: return 3.7 else: return 102</pre>
BMP Nitrogen Load Reduction Ability During Largest Rainfall Allowable - %	<p>This attribute is the percent of nitrogen load that the potential BMP could reduce during the largest rainfall event in which the BMP can treat all watershed runoff from pervious areas while retaining capacity for watershed runoff from impervious areas.</p> <p>For BMP Type 1, percent reduction potential is dependent on the subtype of BMP at the location. The Hydrologic Soil Group With Largest Area in BMP attribute was used to determine the likely infiltration rate of the soil beneath the BMP, and from that a Type 1 subtype could be identified. BMP Type 1 areas with a majority hydrologic soil group (HSG) A were assumed to have a 2.41 surface infiltration rate. BMP Type 1 areas with a majority hydrologic soil group (HSG) B were assumed to have a 0.52 surface infiltration rate. BMP Type 1 areas with a majority hydrologic soil group (HSG) C were assumed to have a 0.17 surface infiltration rate.</p> <p>For BMP Type 2, there were no subtypes. The percent reduction is entirely dependent on the BMP Capacity For Impervious Area Runoff During Largest Rainfall Allowable attribute.</p> <p>Using the BMP Capacity For Impervious Area Runoff During Largest Rainfall Allowable attribute in association with the BMP's type, and referencing the EPA MS4 appendix, the percent that the BMP is able to reduce nitrogen load was determined. In general, the larger the rainfall event (ex. 2in) capacity the larger the percent reduction.</p>	<pre>def CumulativeNitLoadReduction(BMP_Capacity, NLoad, BMP,HSG): BMP_Capacity_Choice = BMP_Capacity.split(" ")[0] NLoadReduction = 0 if BMP == "Type 2": Biofiltration_Nit_Performance_Table = { "0.6": .28, "0.8": .31, "1": .32, "1.5": .37, "2": .40} for key, value in Biofiltration_Nit_Performance_Table.items(): if key == BMP_Capacity_Choice: NLoadReduction = str(round(value * 100.1))+"%" return NLoadReduction elif BMP == "Type 1": SurfaceInfil_pt17_Nit_Performance_Table = { "0.6": .92, "0.8": .96, "1": .98, "1.5": .99, "2": 1.0} SurfaceInfil_pt52_Nit_Performance_Table = { "0.6": .94, "0.8": .98, "1": .99, "1.5": 1.0, "2": 1.0} SurfaceInfil_pt241_Nit_Performance_Table = { "0.6": .98, "0.8": .99, "1": 1.0, "1.5": 1.0, "2": 1.0} if HSG == "A": for key, value in SurfaceInfil_pt241_Nit_Performance_Table.items(): if key == BMP_Capacity_Choice: NLoadReduction = str(round(value * 100.1))+"%" return NLoadReduction if HSG == "B": for key, value in SurfaceInfil_pt52_Nit_Performance_Table.items(): if key == BMP_Capacity_Choice: NLoadReduction = str(round(value * 100.1))+"%" return NLoadReduction if HSG == "C" or HSG == "C/D": for key, value in SurfaceInfil_pt17_Nit_Performance_Table.items(): if key == BMP_Capacity_Choice: NLoadReduction = str(round(value * 100.1))+"%" return NLoadReduction else: return None</pre>

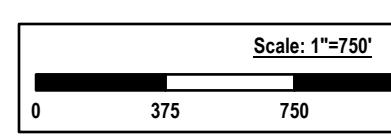
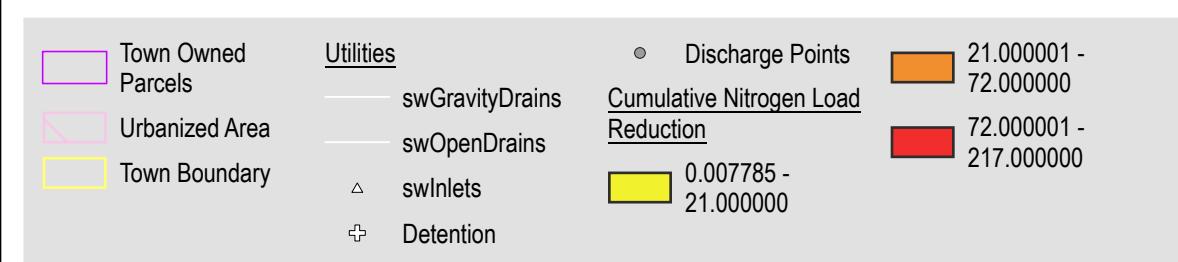
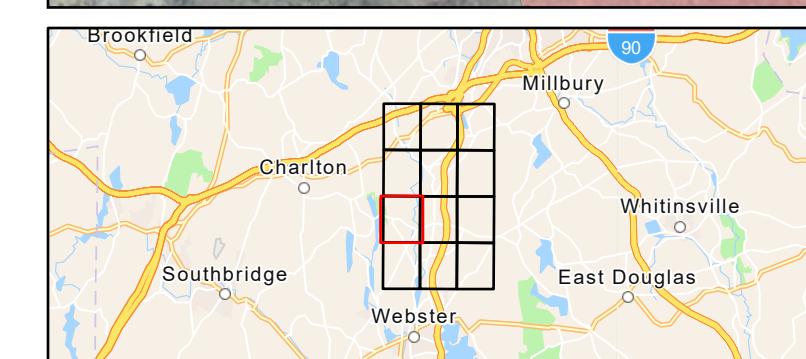
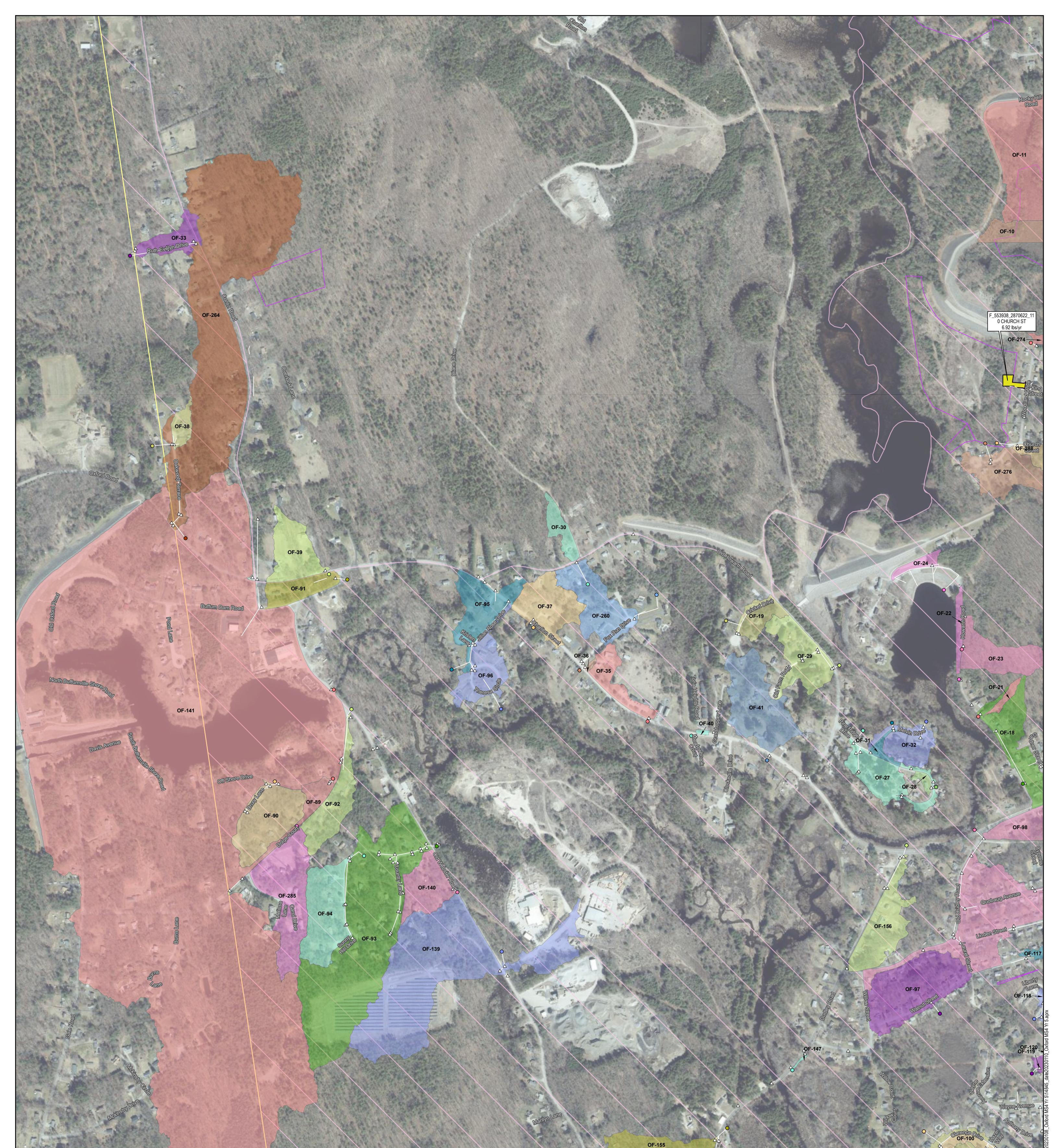
BMP Cumulative Nitrogen Load Reduction - Lb/Yr	<p>This attribute is the potential BMP's cumulative nitrogen load reduction amount in pounds per year. It was calculated by multiplying the BMP Nitrogen Load Reduction Ability During Largest Rainfall Allowable attribute by the Watershed Nitrogen Load attribute. By identifying the load reduction that the BMP's construction could provide, it is possible to do a planning level cost analysis to determine which BMP areas would provide the most benefit to nitrogen load reduction within Oxford, MA.</p> <p>**Note: The calculation assumes that a BMP would be constructed that covers the entire original area. If not the case, the BMP would need to have a depth larger than 2ft to make up for the volume decreased by a smaller than calculated surface area. Runoff would additionally need to be routed to the BMPs location, as the watershed calculated is for the entire original BMP area.</p>	
MS4 Pond Watershed Intersecting BMP	<p>This attribute is what MS4 pond watershed intersects the BMP. MS4 phosphorus reduction requirements are pond watershed specific. For planning purposes, it is important to determine which pond watersheds contain which potential BMP areas. That way construction can be prioritized where high phosphorus reduction BMPs overlap pond watersheds with the highest phosphorus reduction requirements.</p>	
Drainage Outfall Catchment Area Intersecting Watershed	<p>This attribute is what Oxford drainage outfall catchment area intersects the BMP. MS4 nitrogen reduction requirements are undefined but lean on the town's drainage outfall catchment area nitrogen loads to help determine if nitrogen is at an adequate level. By identifying which, if any, outfall catchment areas intersect with the potential BMP's watershed, it is easier to prioritize where BMPs should be constructed for their nitrogen reduction ability.</p>	
Watershed Intersects Drainage Network Flag	<p>This attribute is a flag identifying potential BMPs whose watersheds intersect the Oxford drainage network. The importance of this flag is to associate relevant potential BMP areas with the ability to connect their watershed into the Oxford drainage network and increase its catchment area, therein increasing the BMP's phosphorus and nitrogen load reduction amount.</p>	
Watershed Intersects MassDOT Road Flag	<p>This attribute is a flag identifying potential BMPs whose watersheds intersect MassDOT inventoried roads. The importance of this flag is to associate relevant potential BMP areas with the ability to connect their watershed to road drainage systems that may have been missed by the ArcGIS Pro Watershed tool. Such a connection could either increase the amount of reduceable phosphorus and nitrogen load that reaches the BMP.</p>	
BMP Intersects Urbanized Area Flag	<p>This attribute is a flag identifying potential BMPs that intersect Urbanized Area. The importance of this flag is to provide context for changes in advised BMP construction locations if Oxford commits to only managing nitrogen reduction within the Urbanized Area.</p>	

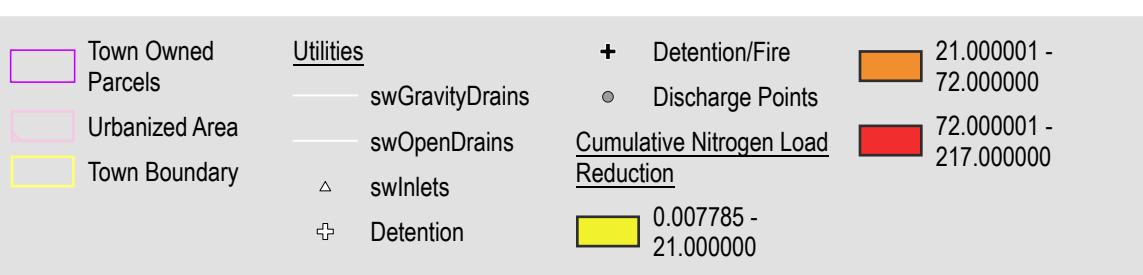
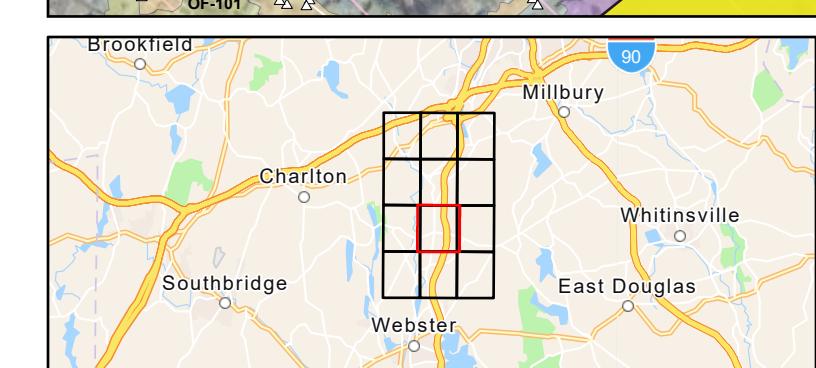
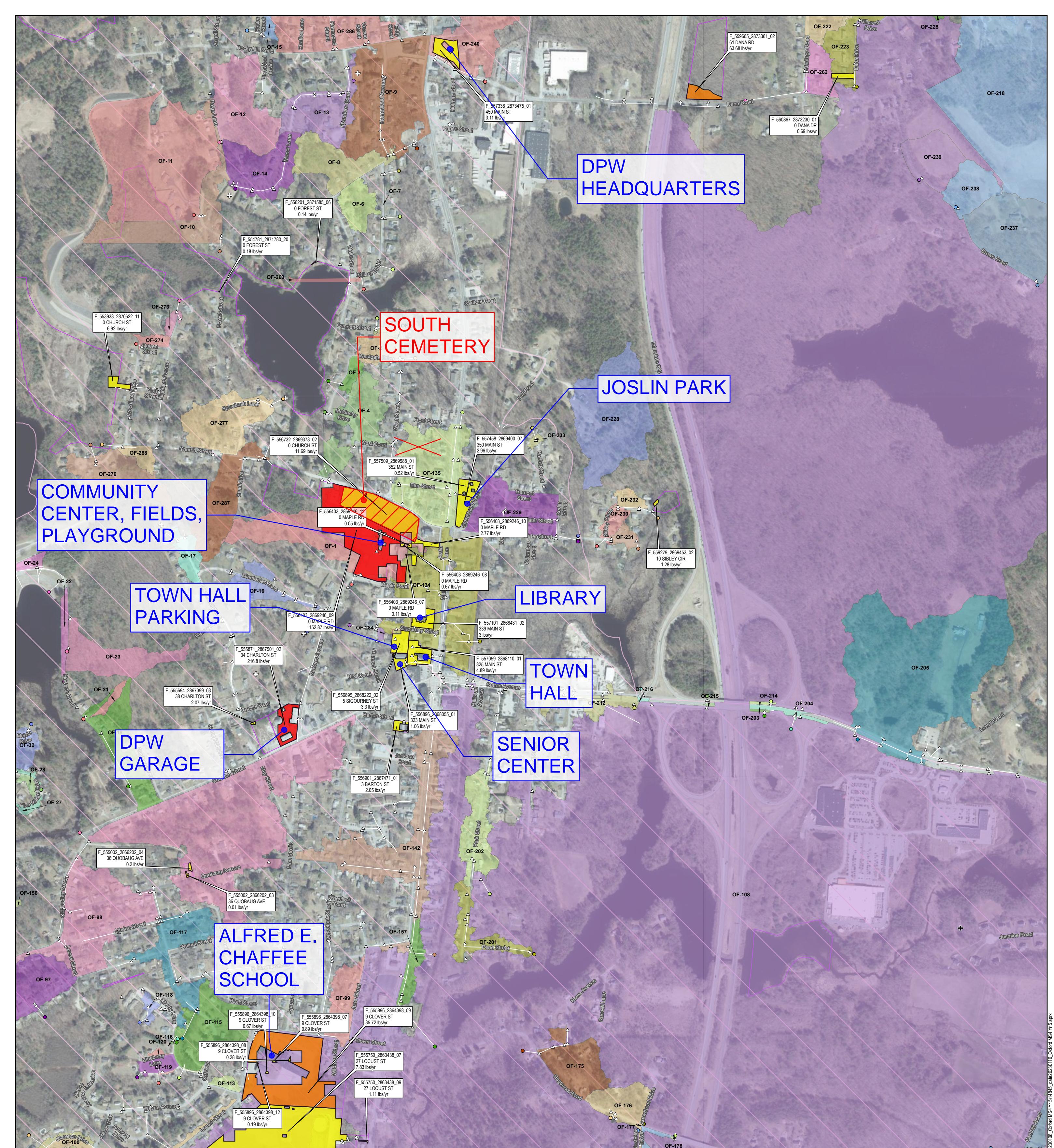




Appendix E – BMP Assessment Results

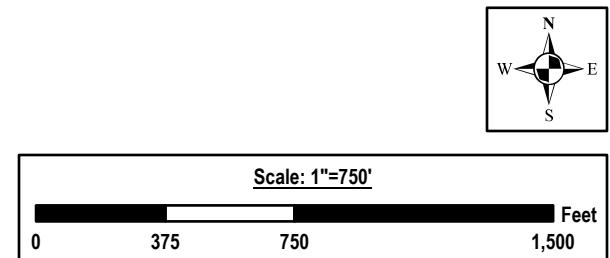
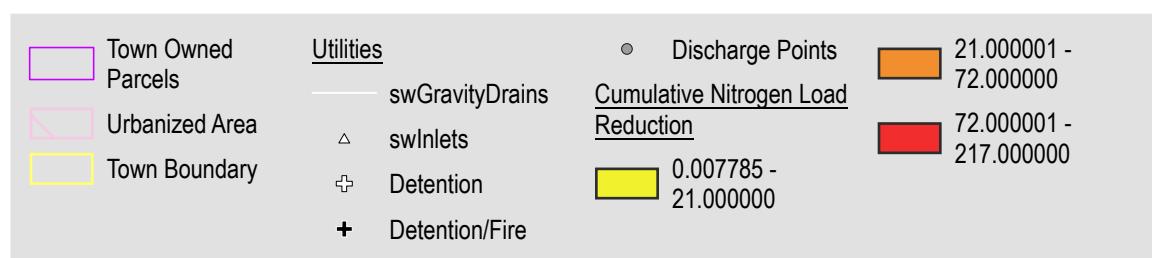
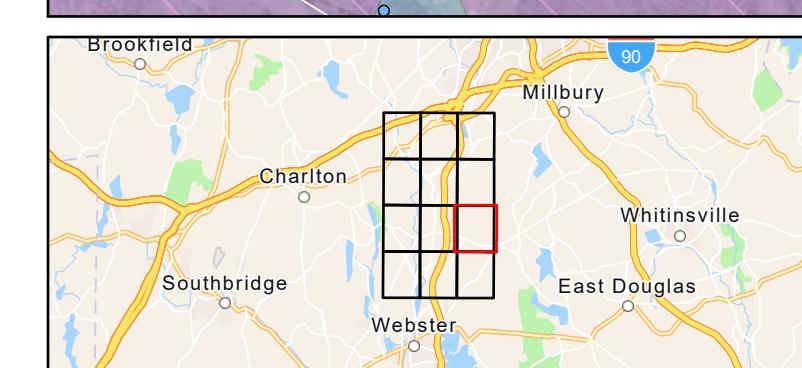





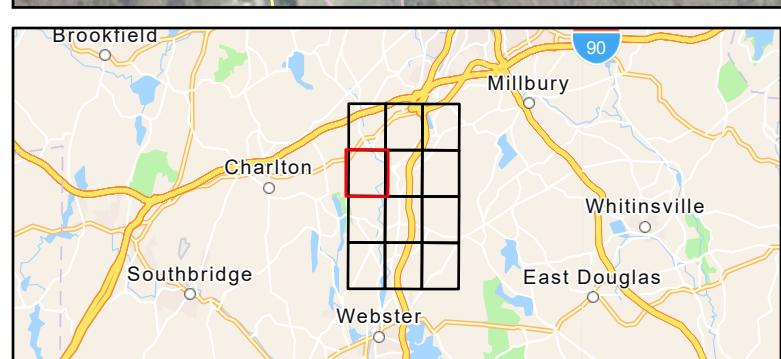
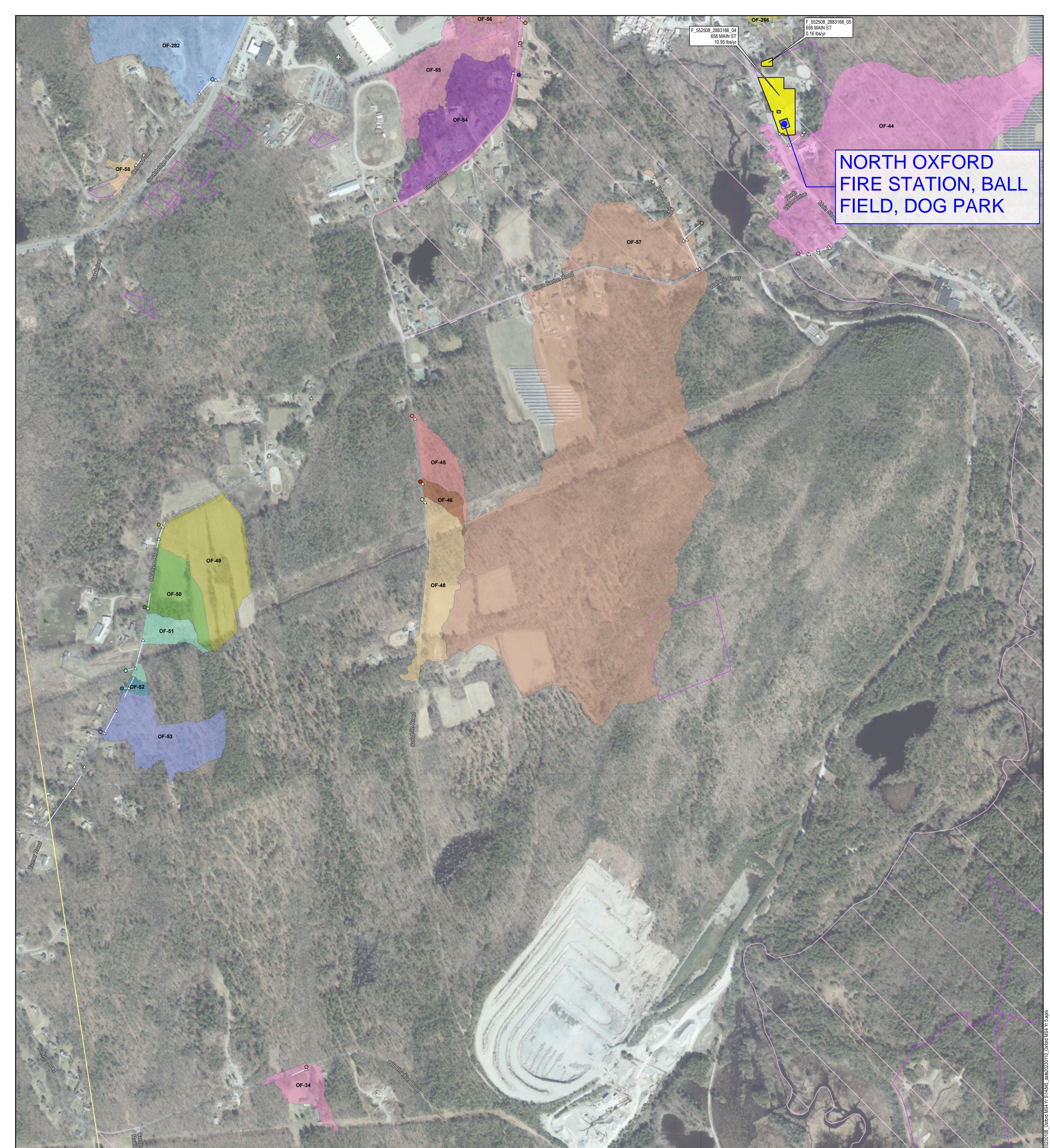





Appendix F – Nitrogen Control BMP Sites & Maps




RUEL FIELDS

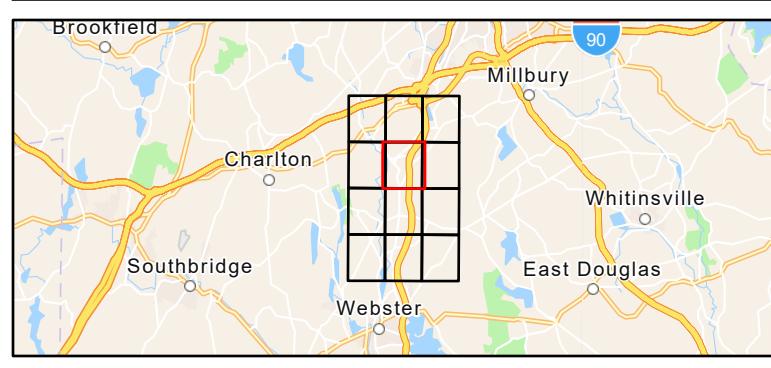
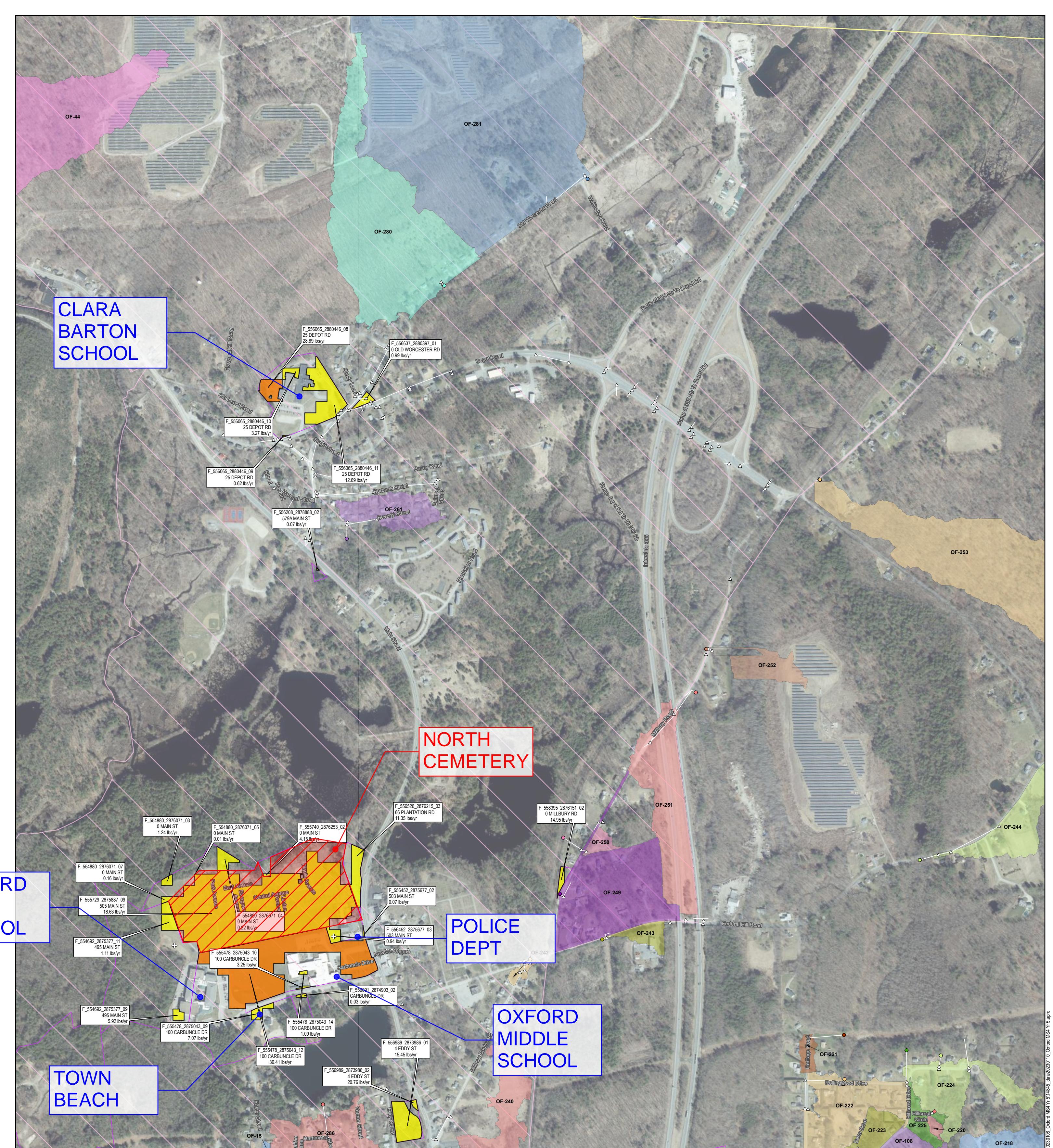
FIRE-EMS HEADQUARTERS

Scale: 1"=750'

0 375 750

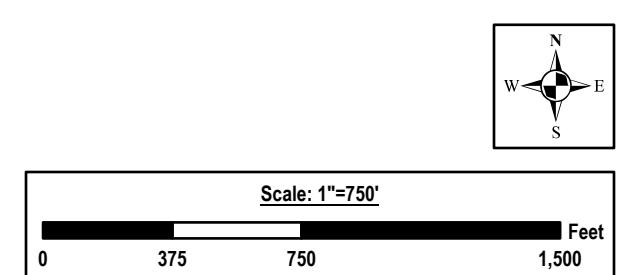
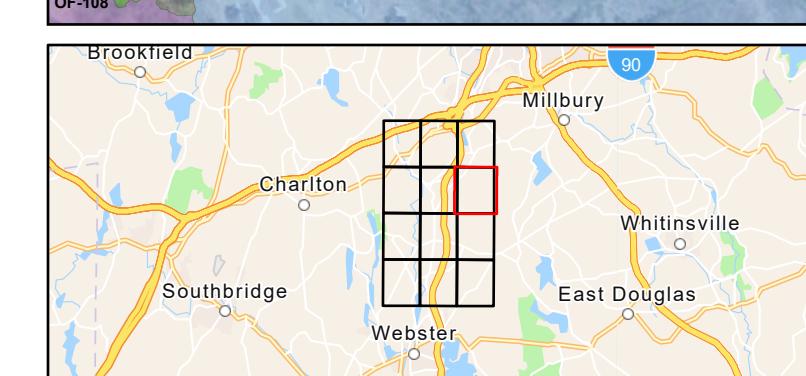
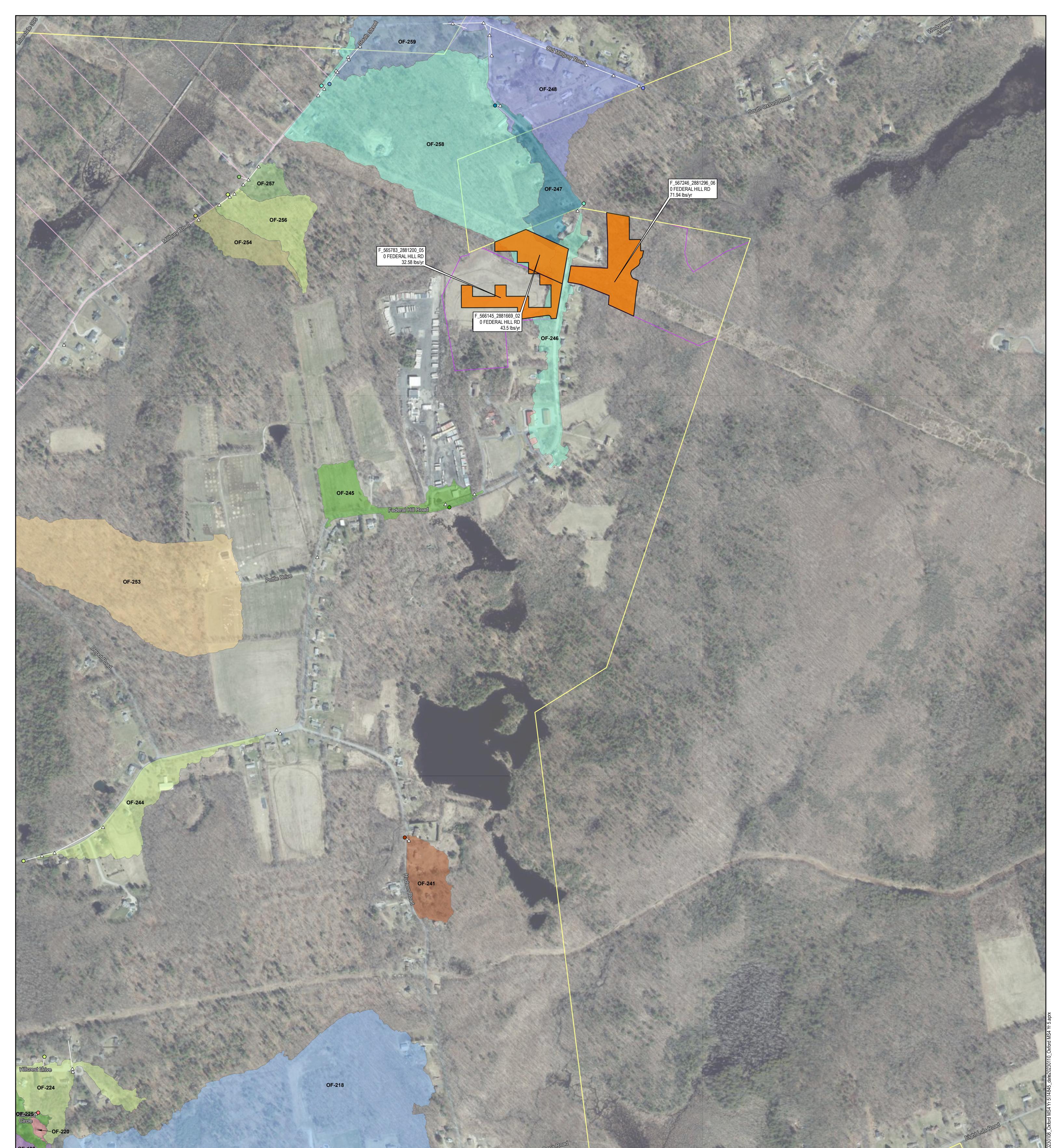
Town Owned Parcels	Utilities	Discharge Points	21.000001 - 72.000000
Urbanized Area	swGravityDrains	Cumulative Nitrogen Load Reduction	72.000001 - 217.000000
Town Boundary	swOpenDrains		
	swInlets		
	Detention		
		0.007785 - 21.000000	

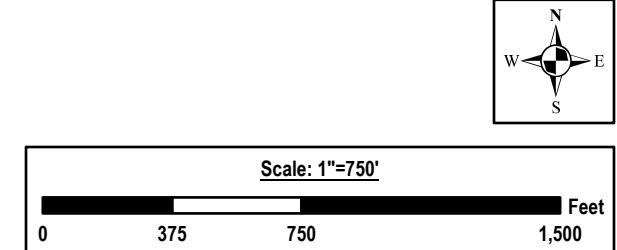
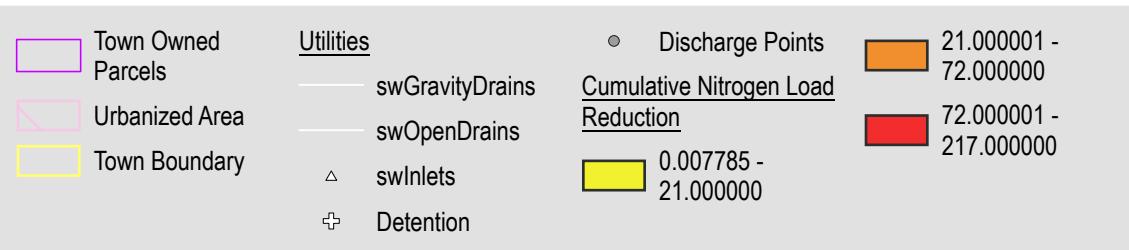
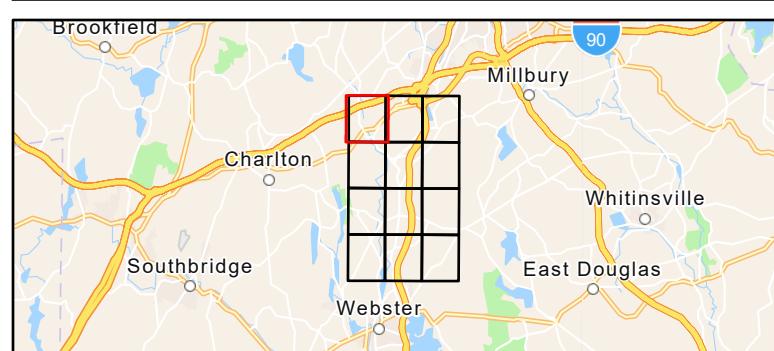
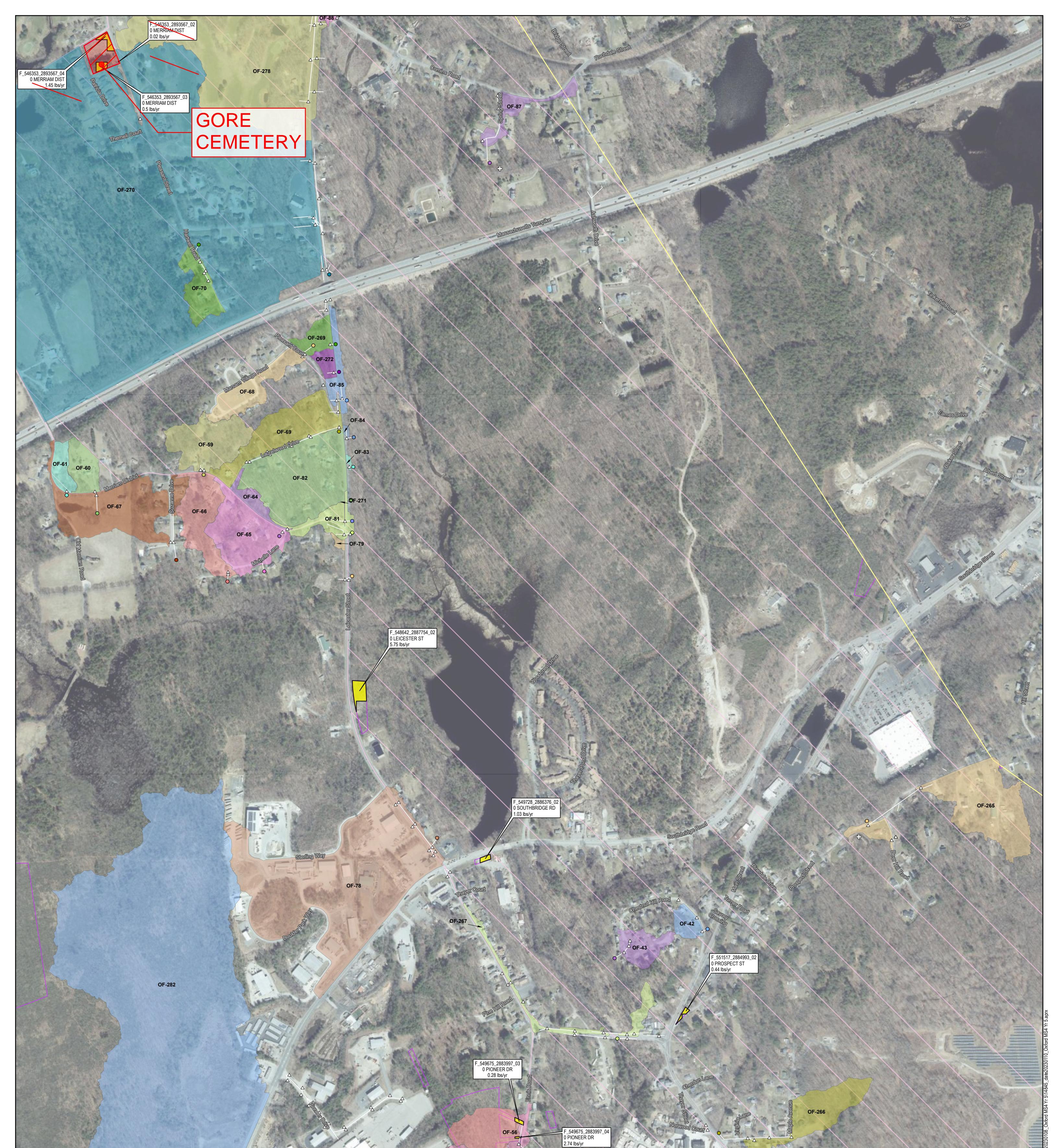
Scale: 1"=750'
0 375 750 1,500 Feet

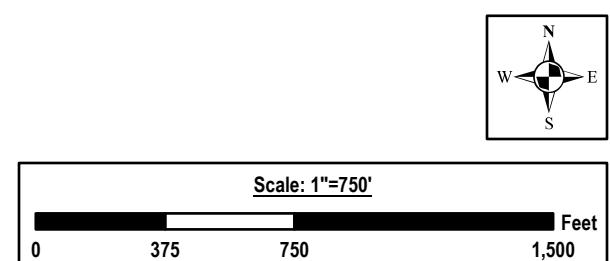
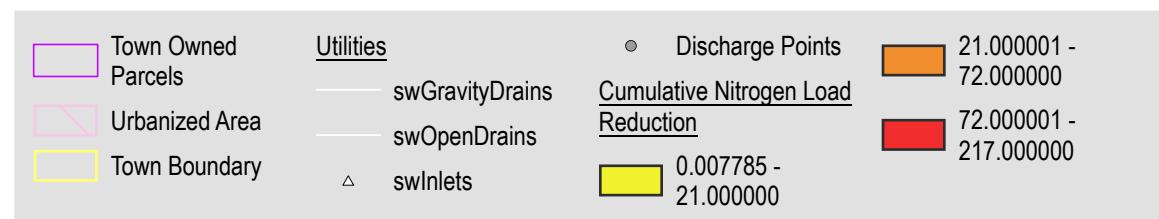
Path: P:\1000-4999\14845_Oxford MS4\Planning\GIS\14845_date20230108_Oxford MS4 V7.514845.dwg

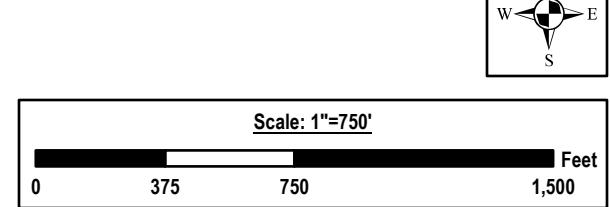
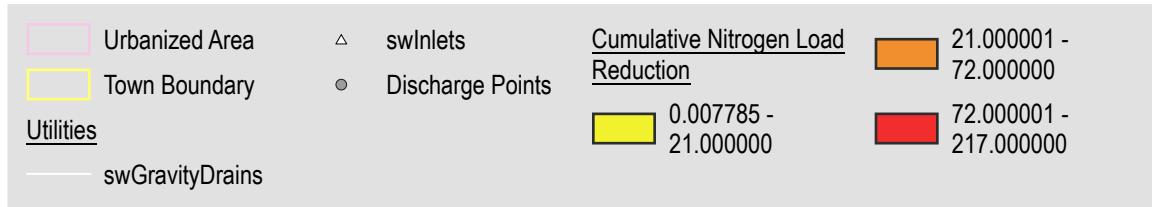
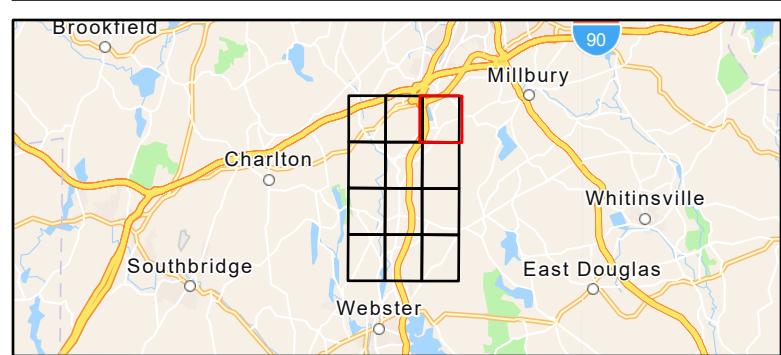
Town Owned Parcels
Urbanized Area
Town Boundary

Utilities




- swGravityDrains
- swOpenDrains
- swInlets
- Detention





Discharge Points



Cumulative Nitrogen Load Reduction




Range	Color
21.000001 - 72.000000	Orange
72.000001 - 217.000000	Red
0.007785 - 21.000000	Yellow

Path: 20000-49991485_Oxford MS4 Year 5.dwg\Planning\GIS\H455_date2/23/2018_Oxford MS4 Y5.dwg

OBJECTID	LOC_ID	RANKING FOR NSID	LOC_ID_BMPLocation	SITE_ADDR	LAND USE/NAME	URBANIZED AREA	BMP	HSG	BMP_AreaFt	BMP_VolumeFt	BMP_Watershed_Acres	BMP_Watershed_IA_Acres	BMP_Watershed_PA_Acres	LoadLbYr	NtLoadReductionPercent	CumulativeNtLoadReduction	IntersectsRoad	ContainsDrainageNetwork	OutfallCatchmentIntersectingBMP	BMP_IA_VolumeFt_Capacity	
1	F_546353	2893567	LOW	F_546353_2893567_02	0 MERRIAM DIST	GORE CEMETERY	YES	Type 2	C/0	33.0418962	66.08378924	0.012097057	0.010826539	0.050407582	40.0%	0.020				2 inches Rainfall: 6.73904843461265 inCH Ia runoff capacity	
2	F_546353	2893567	LOW	F_546353_2893567_03	0 MERRIAM DIST	GORE CEMETERY	YES	Type 2	C/0	70.330.63404	14061.7881	0.0839540803	0.008430167	0.381110636	40.0%	0.505				2 inches Rainfall: 1280.024675228191 ft3, 419.21627303227 inCH Ia runoff capacity	
3	F_546353	2893567	LOW	F_546353_2893567_04	0 MERRIAM DIST	GORE CEMETERY	YES	Type 2	C/0	9285.197397	18571.83587	0.78269114	0.114542228	6.316948913	40.0%	1.448				2 inches Rainfall: 1643.24718366427 ft3, 39.4750108675248 inCH Ia runoff capacity	
4	F_64452	2860635	LOW	F_64452_2860635_05	75 OLD SOUTHBRIDGE RD	[Not mapped, not enough IA]	YES	Type 2	D	1232.55495	2465.1109	11.25845019	0.646773726	38.81400673	40.0%	0.00251749				2 inches Rainfall: 14.36261989 ft3, 10.61167646 inCH Ia runoff capacity	
5	F_58462	287754	HIGH	F_58462_287754_02	0 LEICESTER ST	multi-family residential	YES	Type 2	B	22050.99176	44101.98532	7.760516871	0.391502629	7.368850524	40.0%	5.745				2 inches Rainfall: 2811.2332505281 inCH Ia runoff capacity	
6	F_549675	2883997	LOW	F_549675_2883997_03	0 PIONEER DR	NO	YES	Type 2	B	2687.789515	537.59031	0.476074619	0.5781446	0.697806878	40.0%	0.279				2 inches Rainfall: 482.0249304021 ft3, 516.3.296708932 inCH Ia runoff capacity	
7	F_549675	2883997	LOW	F_549675_2883997_04	0 PIONEER DR	NO	YES	Type 2	B	820.7878082	1641.575616	3.486584136	0.119346083	3.367238059	32.0%	2.741				2 inches Rainfall: 292.09380793876 ft3, 0.674281916972109 inCH Ia runoff capacity	
8	F_49728	2863676	HIGH	F_49728_2863676_02	0 SOUTHBRIDGE RD	commercial	YES	Type 2	F	4113.479289	8226.958577	0.27864072	0.173775909	0.010482811	2.576304892	40.0%	1.030			2 inches Rainfall: 814.324288617702 ft3, 12.909547548517852 inCH Ia runoff capacity	
9	F_551517	2884993	LOW	F_551517_2884993_02	0 PROSPECT ST	[triangle lot]	YES	Type 2	A	3637.418677	7274.837354	0.161772771	0.076029693	0.085647578	40.0%	0.439				2 inches Rainfall: 2731.3115521051 ft3, 26.526153300940 inCH Ia runoff capacity	
10	F_551920	2858411	LOW	F_551920_2858411_03	0 SNEADE DR	easement?	YES	Type 2	F	4110.62044	8221.240489	0.385739276	0.296177352	2.151355186	40.0%	0.861				2 inches Rainfall: 190.12638553439 ft3, 5.87557012871548 inCH Ia runoff capacity	
11	F_552028	2858363	LOW	F_552028_2858363_05	15 OLD WEBSTER RD	NO	YES	Type 2	B	90.4411083	180.882167	0.002019674	0.001549935	0.00469379	40.0%	0.009				2 inches Rainfall: 180.50731886892 ft3, 28.0392220844 inCH Ia runoff capacity	
12	F_552028	2858363	LOW	F_552028_2858363_06	15 OLD WEBSTER RD	NO	YES	Type 2	B	2274.71144	45449.42288	10.150502774	0.15991193	10.13903661	12.39312887	40.0%	4.957			2 inches Rainfall: 3078.4272297094 ft3, 63.85854823533 inCH Ia runoff capacity	
13	F_552028	288166	LOW	F_552028_288166_06	656 MAIN ST	N. FIRE STATION, BALL FIELD, DOG PARK	YES	Type 2	B	1023.273	20474.474	4.838993934	1.739377472	3.099616462	27.73076374	40.0%	10.948			2 inches Rainfall: 202.1712402745 ft3, 32.30732505281 inCH Ia runoff capacity	
14	F_552028	288166	LOW	F_552028_288166_07	656 MAIN ST	N. FIRE STATION, BALL FIELD, DOG PARK	YES	Type 2	B	5861.808256	11723.61651	0.255172879	0.09724619	0.24742826	4.046851105	40.0%	0.163			2 inches Rainfall: 1152.6543754207 ft3, 400.69717985369 inCH Ia runoff capacity	
15	F_552838	2858456	LOW	F_552838_2858456_02	0 HARWOOD ST	wedge lot	YES	Type 2	B	2967.70196	5584.415611082684 ft3, 9.3681017472109 inCH Ia runoff capacity	0.3320394935	0.159903124	2.475507239	40.0%	0.990					2 inches Rainfall: 14.545611082684 ft3, 9.3681017472109 inCH Ia runoff capacity
16	F_552851	2858184	LOW	F_552851_2858184_04	0 LARNEY RD	[triangle lot]	YES	Type 2	B	18106.38883	36212.77766	0.560042388	0.172042815	0.432995973	1.921203569	40.0%	1.030			2 inches Rainfall: 3592.72728031456 ft3, 78.07432745309 inCH Ia runoff capacity	
17	F_552369	2858272	LOW	F_552369_2858272_02	80 OLD WEBSTER RD	just outside USA	NO	Type 2	B	1846.61566	16873.77312	3.815298427	0.785344488	3.029953938	11.99382196	40.0%	4.798			2 inches Rainfall: 15245.47403725382 ft3, 5.347797061251 inCH Ia runoff capacity	
18	F_553560	2862781	LOW	F_553560_2862781_03	0 FRENCH RIVER CIR	NO	YES	Type 2	B	892.5996278	1785.195836	0.364063267	0.16776602	0.22778205	1.996728642	40.0%	0.799			2 inches Rainfall: 10.5001616452 ft3, 1.78120274516 inCH Ia runoff capacity	
19	F_553560	2862781	LOW	F_553560_2862781_04	0 FRENCH RIVER CIR	NO	YES	Type 2	B	281.086133	562.720267	0.033904165	0.0135145487	0.020388679	0.196684967	40.0%	0.079			2 inches Rainfall: 10.5001616452 ft3, 1.78120274516 inCH Ia runoff capacity	
20	F_553906	2874229	LOW	F_553906_2874229_01	0 ROCKY HILL RD	stockpiles, yw collection	YES	Type 2	B	31298.9559	643965.9118	109.881016	17269.79887	40973.97492						Rainfall Capacity less than 0.6in	
21	F_553938	2870622	LOW	F_553938_2870622_11	202.7670622	0 CHURCH ST	YES	Type 2	B	1360.34754	27202.6958	5.139417663	1.739377472	4.043874227	17.30501815	40.0%	6.922			2 inches Rainfall: 202.1712402745 ft3, 32.30732505281 inCH Ia runoff capacity	
22	F_554692	2875377	LOW	F_554692_2875377_09	495 MAIN ST	OXFORD HIGH SCHOOL	YES	Type 2	B	8897.220277	17794.4055	1.393716961	0.042995292	0.350577535	14.81095241	40.0%	5.924			2 inches Rainfall: 176.18547270955 ft3, 4.6.5363013609181 inCH Ia runoff capacity	
23	F_554692	2875377	LOW	F_554692_2875377_11	495 MAIN ST	OXFORD HIGH SCHOOL	YES	Type 2	B	2765.748815	5531.362879	1.351554727	0.17091066	1.180644521	2.764026709	40.0%	1.106			2 inches Rainfall: 14.545611082684 ft3, 9.3681017472109 inCH Ia runoff capacity	
24	F_554781	2871780	HIGH	F_554781_2871780_02	0 FOREST ST	near McKinstry Pond	YES	Type 2	B	42.665218353	129.3436760	0.13533642	0.062877132	0.135398359	32.0%	0.181				2 inches Rainfall: 10.50267876962 ft3, 1.0.1879224346 inCH Ia runoff capacity	
25	F_554880	2867017	LOW	F_554880_2867017_03	0 MAIN ST	adj to north cemetery	YES	Type 2	B	7447.456561	14894.9113	1.653362307	0.188207496	1.465154811	3.093221739	40.0%	1.237			2 inches Rainfall: 14150.31936261216 ft3, 20.71263196745 inCH Ia runoff capacity	
26	F_554880	2867017	LOW	F_554880_2867017_04	0 MAIN ST	adj to north cemetery	YES	Type 2	B	23571.25884	47412.45168	1.081556848	0.101155684	1.085155333	0.53930616	40.0%	0.216			2 inches Rainfall: 45690.89443170333 ft3, 8.86.8040917333 inCH Ia runoff capacity	
27	F_554880	2867017	LOW	F_554880_2867017_05	0 MAIN ST	adj to north cemetery	YES	Type 2	B	23.2378249	46.47556497	0.0121130541	0.011311404	0.019874792	0.008					2 inches Rainfall: 39.10731916452 ft3, 9.70.80816343487 inCH Ia runoff capacity	
28	F_554880	2867017	LOW	F_554880_2867017_06	0 MAIN ST	adj to north cemetery	YES	Type 2	B	4195.63348	8391.12669	0.352499935	0.3951927408	0.331519927	0.158					2 inches Rainfall: 39.106909110034407 inCH Ia runoff capacity	
29	F_555002	2866202	LOW	F_555002_2866202_36	36 QUOBAUG AVE	residential	YES	Type 2	B	873.557747	1745.071549	0.045595901	0.004019038	0.045176862	0.016491497	40.0%	0.008			2 inches Rainfall: 172.21266793499 ft3, 1.13.4216096251532 inCH Ia runoff capacity	
30	F_555002	2866202	LOW	F_555002_2866202_37	36 QUOBAUG AVE	residential	YES	Type 2	B	1554.227629	3108.455258	0.051782616	0.017315267	0.049118491	0.196					2 inches Rainfall: 309.656639208638 ft3, 24.77146107538936 inCH Ia runoff capacity	
31	F_555002	2861222	LOW	F_555002_2861222_07	0 SUNSET AVE	NO	YES	Type 2	B	1765.684688	3531.363977	5205.22164667	0.22164667	4882.801516	0.051782616	40.0%				Rainfall Capacity less than 0.6in	
32	F_555002	2861222	LOW	F_555002_2861222_08	0 SUNSET AVE	NO	YES	Type 2	B	2431.839732	4863.679463	146.5932836	16.8138938	129.7749437	36.63330269	40.0%				Rainfall Capacity less than 0.6in	
33	F_555002	2861222	LOW	F_555002_2861222_09	0 SUNSET AVE	NO	YES	Type 2	B	2025.107198	4050.214395	0.010400701	0.006106209	0.040232491	0.89645767	40.0%	0.359			2 inches Rainfall: 389.3229945178373 ft3, 17.82572964923 inCH Ia runoff capacity	
34	F_553399	2861526	LOW	F_553399_2861526_11	0 SUNSET AVE	NO	YES	Type 2	B	689.596528	1379.193166	0.104520312	0.185559267	0.246483855	47.3262046	40.0%	14.171			2 inches Rainfall: 484.9083360842815 ft3, 0.014897959931290385 inCH Ia runoff capacity	
35	F_553399	2861526	LOW	F_553399_2861526_12	0 SUNSET AVE	NO	YES	Type 2	B	1128.525061	225.0705122	0.573387573	0.5468592423	0.9176238693	28.0%		2.753			0.5 Inches Rainfall: 594.46882053616 ft3, 0.1.672956388275604 inCH Ia runoff capacity	
36	F_553399	2861526	LOW	F_553399_2861526_14	0 SUNSET AVE	NO	YES	Type 2	B	48.02497297	96.04995855	0.020254605	0.03946375	0.039376152	0.0706721206	40.0%				Rainfall Capacity less than 0.6in	
37	F_554748	2875043	MEDIUM	F_554748_2875043_10	100 CARBUNCLE DR	OXFORD HIGH SCHOOL	YES	Type 2	B	47198.2609	94395.5217	6.05995172	24.664944252	26.446942509	40.0%	36.409			2 inches Rainfall: 934.50216315673 ft3, 42.48712061397 inCH Ia runoff capacity		
38	F_554748	2875043	MEDIUM	F_554748_2875043_11	100 CARBUNCLE DR	OXFORD HIGH SCHOOL	YES	Type 2	B	2396.84731	4791.69462	0.26448865	0.192224741	0.273265909	2.718220419	40.0%	1.087			2 inches Rainfall: 475.404805813016 ft3, 6.84.904477796161 inCH Ia runoff capacity	
39	F_556505	2865015	LOW	F_556505_2865015_04	37 MAIN ST	DPW GARAGE	YES	Type 2													

90 potential BMF sites on 60 town-owned parcels

Appendix G – Implementation Schedule

LPCP Implementation Schedule - BUFFUMVILLE LAKE							
Milestone	Phosphorus Reduction Goal (lb/yr)	Structural BMP Credits for town-owned properties (lb/yr)	Non-Structural BMP Credits (lb/yr)	Structural BMPs adjacent to Roadways Credits (lb/yr)	Total BMP Credits (lb/year)	Percent of Milestone Goal	Note: percent of roads treated
Year 8 (2026)	3.71	0	1.76	1.95	3.71	100%	15%
Year 10 (2028)	7.41	0	1.76	5.72	7.48	101%	44%
Year 13 (2031)	12.97	0	1.76	11.32	13.08	101%	87%
Year 15 (2033)	18.53	0	1.76	13.01	14.77	80%	100%

*Town will not reach Year 15 milestone for Buffumville without additional interventions or more detailed analysis before year 15

*options not considered in these calculations include: installation/certification of privately-owned/maintained BMPs, increasing non-structural BMP credits by street sweeping more frequently or using more effective equipment

LPCP Implementation Schedule - LOWES POND							
Milestone	Phosphorus Reduction Goal (lb/yr)	Structural BMP Credits for town-owned properties (lb/yr)	Non-Structural BMP Credits (lb/yr)	Structural BMPs adjacent to Roadways Credits (lb/yr)	Total BMP Credits (lb/year)	Percent of Milestone Goal	Note: percent of roads treated
Year 8 (2026)	54.47	29.75	24.72	0.00	54.47	100%	0%
Year 10 (2028)	108.93	42.99	24.72	41.22	108.93	100%	57%
Year 13 (2031)	190.63	42.99	24.72	72.04	139.75	73%	100%
Year 15 (2033)	272.33	42.99	24.72	72.04	139.75	51%	100%

LPCP Implementation Schedule - MCKINSTRY POND							
Milestone	Phosphorus Reduction Goal (lb/yr)	Structural BMP Credits for town-owned properties (lb/yr)	Non-Structural BMP Credits (lb/yr)	Structural BMPs adjacent to Roadways Credits (lb/yr)	Total BMP Credits (lb/year)	Percent of Milestone Goal	Note: percent of roads treated
Year 8 (2026)	6.60	1.54	2.46	2.60	6.6	100%	36%
Year 10 (2028)	13.21	1.54	2.46	7.20	11.2	85%	100%
Year 13 (2031)	23.11	1.54	2.46	7.20	11.2	48%	100%
Year 15 (2033)	33.02	1.54	2.46	7.20	11.2	34%	100%

LPCP Implementation Schedule - ROBINSON POND							
Milestone	Phosphorus Reduction Goal (lb/yr)	Structural BMP Credits for town-owned properties (lb/yr)	Non-Structural BMP Credits (lb/yr)	Structural BMPs adjacent to Roadways Credits (lb/yr)	Total BMP Credits (lb/year)	Percent of Milestone Goal	Note: percent of roads treated
Year 8 (2026)	1.19	0	1.11	0.12	1.23	103%	2%
Year 10 (2028)	2.38	0	1.11	1.30	2.41	101%	22%
Year 13 (2031)	4.17	0	1.11	3.08	4.19	100%	52%
Year 15 (2033)	5.96	0	1.11	4.85	5.96	100%	82%

LPCP Implementation Schedule - TEXAS POND							
Milestone	Phosphorus Reduction Goal (lb/yr)	Structural BMP Credits for town-owned properties (lb/yr)	Non-Structural BMP Credits (lb/yr)	Structural BMPs adjacent to Roadways Credits (lb/yr)	Total BMP Credits (lb/year)	Percent of Milestone Goal	Note: percent of roads treated
Year 8 (2026)	11.48	1.03	10.91	0.00	11.94	104%	0%
Year 10 (2028)	22.96	1.22	10.91	10.83	22.96	100%	40%
Year 13 (2031)	40.18	1.22	10.91	27.49	39.62	99%	100%
Year 15 (2033)	57.40	1.22	10.91	27.49	39.62	69%	100%

Appendix H – Pilot Demonstration Project

Oxford Pilot Project Summary – Sigourney/Fremont Street and Town Hall Complex

Sigourney Street and Fremont Street are located within the Town Center of Oxford, Massachusetts. Sigourney Street connects Fremont Street to Main Street and provides vehicular access to the Oxford Free Public Library and the Oxford Town Hall complex.

Nitsch Engineering worked with the Town of Oxford to update their MassDOT Tier 2 Complete Streets Prioritization Plan. This included working closely with the Town's Department of Public Works to develop goals for analyzing and improving the Town's existing Complete Street network. Nitsch reviewed existing planning studies, master plans, and projects to determine a list of potential projects, as well as a gap analysis of the Town's pedestrian network to identify potential projects.

After developing a preliminary project list, Nitsch conducted a binary ranking of all the potential projects. Each project was ranked on 10 factors that varied from distances from schools, network gaps, safety, cost, permitting, and public support.

The top ranked project from the Complete Streets Prioritization Plan was Sigourney and Fremont Street (subsequently referred to as the Project). The Project was prioritized because the reconstruction of the roadways and addition of sidewalks provides a direct connection from residential properties to the Oxford Public Library and connects to the existing sidewalks on Main Street. This Project would help complete the sidewalk network directly within the Town Center area, increasing pedestrian accessibility to key destinations such as the Community Center and Town Hall. The Project is located within a quarter mile of the Oxford Community Center and within a mile of the A.M. Chaffee Elementary School.

Additionally, the existing roadways are very flat and experience drainage issues following rainfall events (Figures 2 and 3). The Project provides an opportunity to improve positive drainage to reduce ponding, as well as providing stormwater retrofit best management practices (BMPs) to reduce pollutant discharges to the Town's stormwater system.

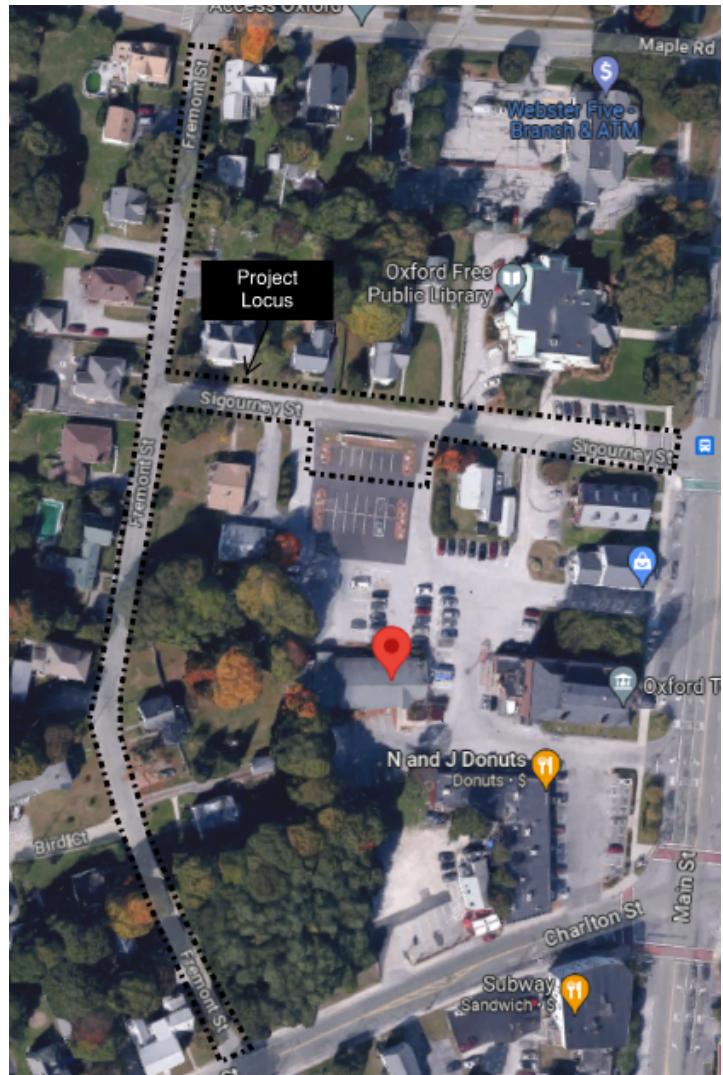


Figure 1. Project Locus

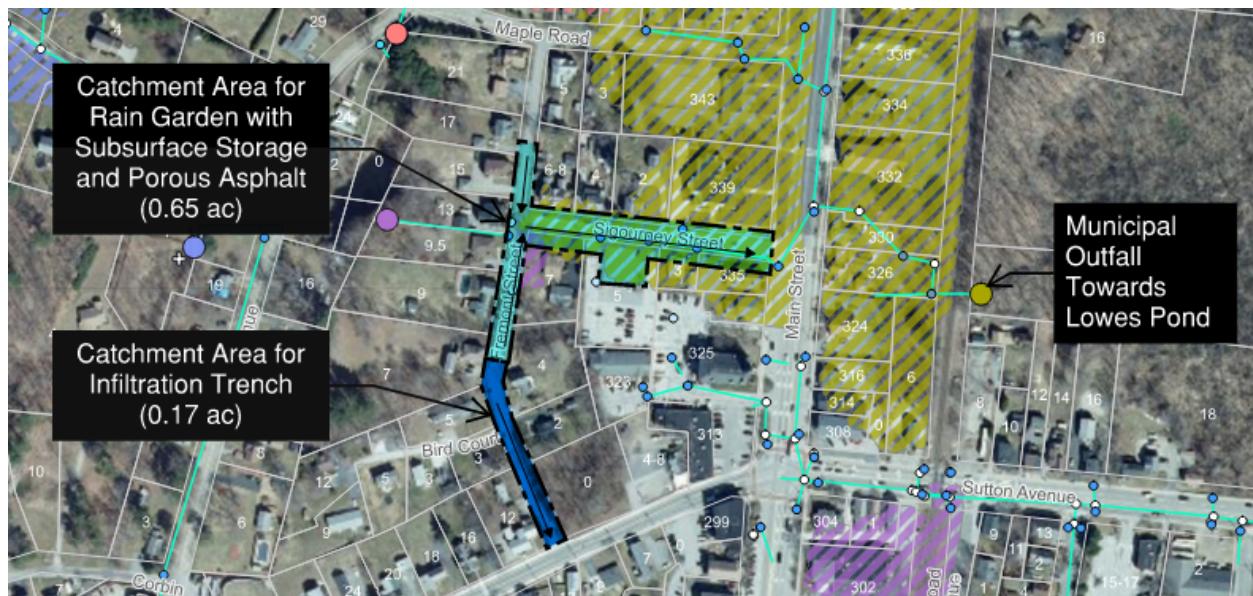
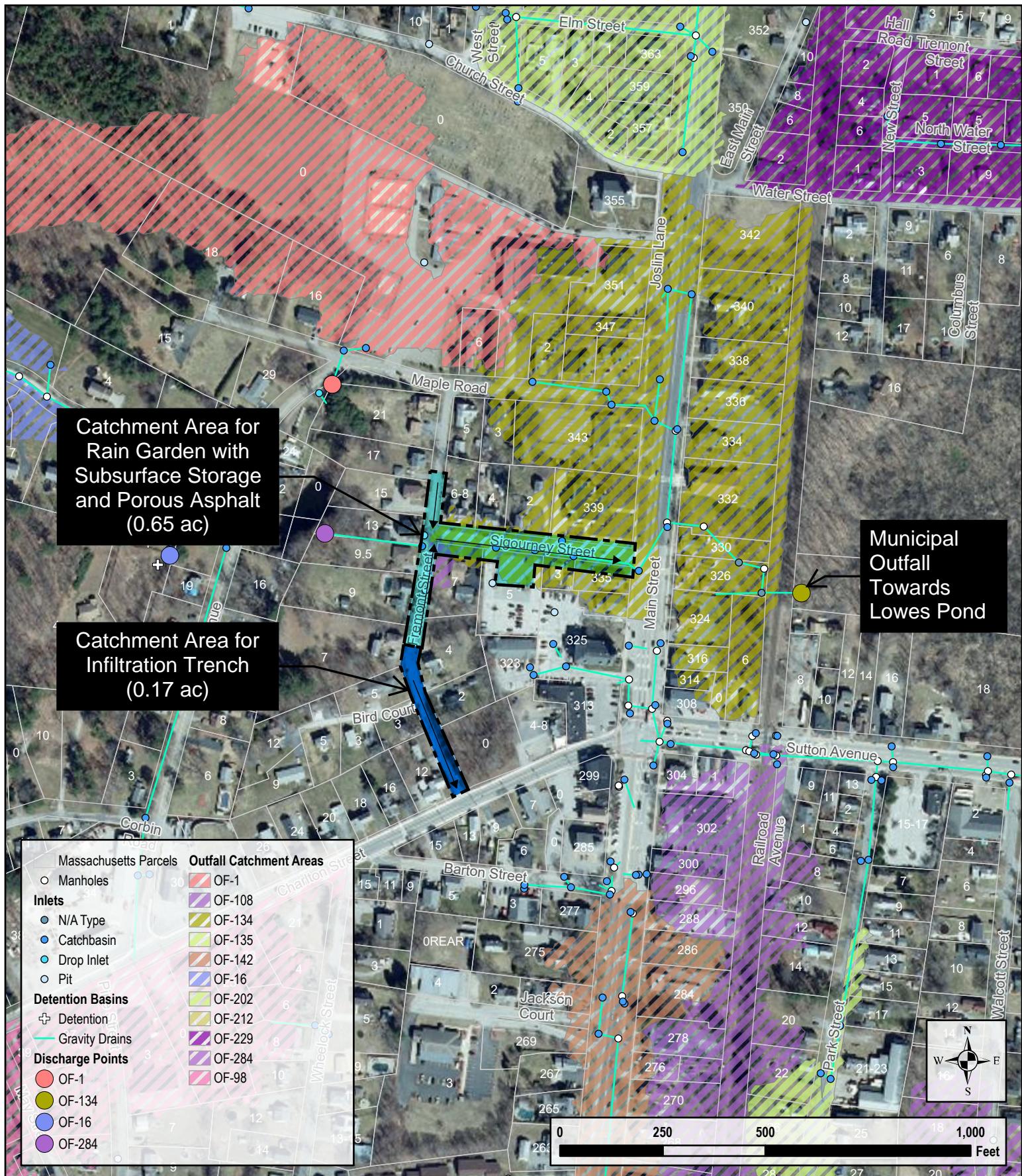
Figures 2 and 3. Sigourney Street, left, and Fremont Street, right, in the preconstruction condition

The Project is located within a portion of Oxford that is prioritized for stormwater retrofits due to its urbanized location within both nitrogen and phosphorus impairment watershed. Most of the Project discharges towards the municipal stormwater system located in Main Street, which discharges towards Lowes Pond (Figure 4). Lowes Pond was categorized as “4A” in the Final Massachusetts Integrated List of Waters for the Clean Water Act 2018/2020 Reporting Cycle and a TMDL is completed/determined. Nutrient/Eutrophication Biologic Indicators are noted as an impairment. A survey from the mid-1990s also indicated that 75% to 100% of the Pond was covered with aquatic plants.

To meet the Project’s stormwater water quality goals, several stormwater BMP retrofits were incorporated into the Project. These included: (1) a subsurface infiltration trench located at the southern end of Fremont Street, (2) a bioretention basin with enhanced subsurface storage at the entrance to the Town Hall Complex on Sigourney Street, and (3) porous asphalt sidewalks on Sigourney Street. The bioretention basin is an expansion of an existing rain garden to provide additional capacity both above and below grade (Figure 5).

The BMPs were designed to maximize treatment and storage and provide infiltration of up to the 25-year storm event. The BMPs were designed to accommodate greater than 2.0 inches BMP capacity and provide infiltration, therefore the estimated pollutant removal was determined based on the Subsurface Infiltration Trench (IR = 2.41 in./hr) BMP Performance Table from Appendix H Attachment 3 of the MA MS4 Permit. **This chart indicates both phosphorus and nitrogen load reductions of 100%, which equates to 1.45 lb/year and 10.46 lb/year, respectively.**

The Project issued 100% Construction Documents in March 2023 and is anticipated to be constructed in summer 2023. The Plans are attached for reference.

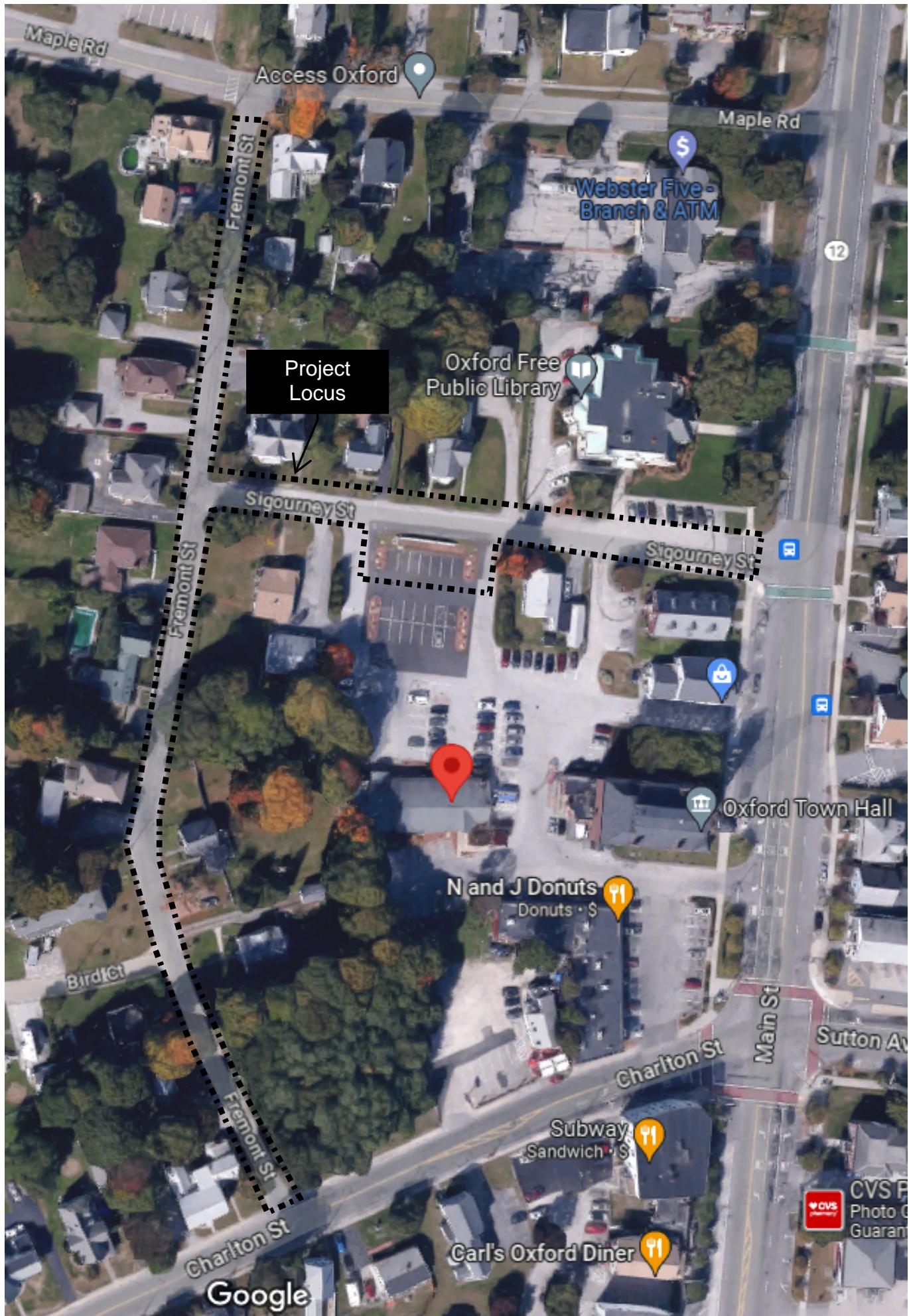

Figure 4. Catchment Areas with New Stormwater BMP for the Project

Figure 5. Town Hall Complex – Bioretention Basin with Enhanced Storage Stormwater Retrofit

Drainage Network
Oxford, MA

TOWN OF OXFORD

DEPARTMENT OF PUBLIC WORKS

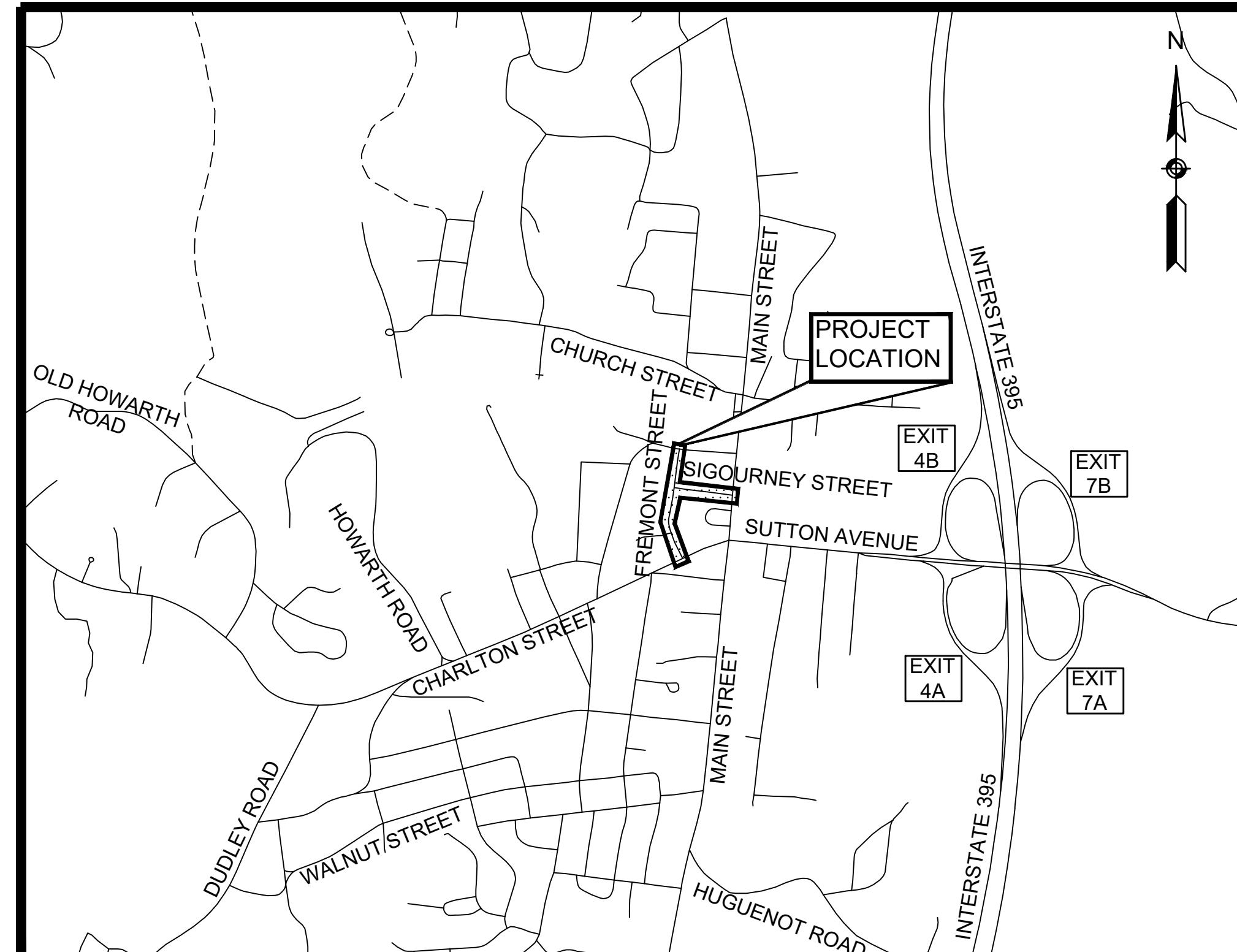
PLAN OF SIGOURNEY STREET AND FREMONT STREET SIDEWALK CONSTRUCTION

IN THE TOWN OF

OXFORD

WORCESTER COUNTY

PROJECT NO.


H-23-08

OXFORD
SIGOURNEY STREET AND FREMONT STREET
SIDEWALK CONSTRUCTION
SHEET 1 OF 28
TITLE SHEET & INDEX

14521.3_HD_TITLE.DWG

Plotted on 15-Mar-2023 3:13PM

INDEX	
SHEET NO.	DESCRIPTION
1	TITLE SHEET & INDEX
2	LEGEND & ABBREVIATIONS
3	KEY PLAN
4	GENERAL NOTES AND TYPICAL SECTIONS
5	BASELINE TIE PLAN
6 - 8	CONSTRUCTION PLANS AND PROFILES
9 - 11	CURB TIE PLANS
12 - 14	GRADING PLANS
15 - 17	DRAINAGE & UTILITY PLANS
18 - 21	SIGN & PAVEMENT MARKING PLANS
22	TEMPORARY TRAFFIC CONTROL PLAN
23 - 27	CONSTRUCTION DETAILS
28	BIORETENTION DETAILS

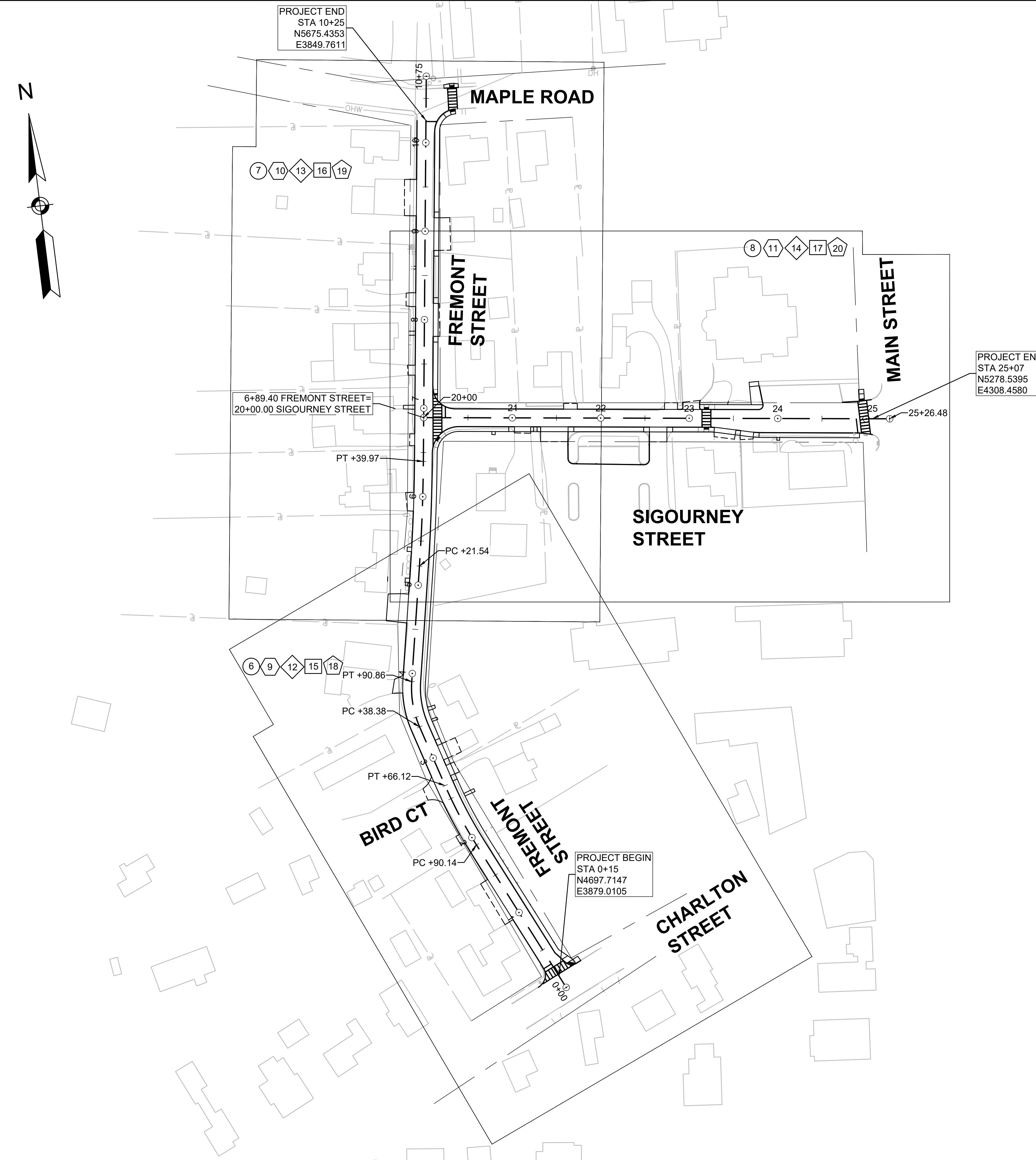
0 1,000 2,000 3,000 4,000
SCALE: 1" = 1,000'

THESE PLANS ARE SUPPLEMENTED BY THE OCTOBER 2017 CONSTRUCTION STANDARD DETAILS, THE 2015 OVERHEAD SIGNAL STRUCTURE AND FOUNDATION STANDARD DRAWINGS, MASSDOT TRAFFIC MANAGEMENT PLANS AND DETAIL DRAWINGS, THE 1990 STANDARD DRAWINGS FOR SIGNS AND SUPPORTS, THE 1968 STANDARD DRAWINGS FOR TRAFFIC SIGNALS AND HIGHWAY LIGHTING, AND THE LATEST EDITION OF THE AMERICAN STANDARD FOR NURSERY STOCK.

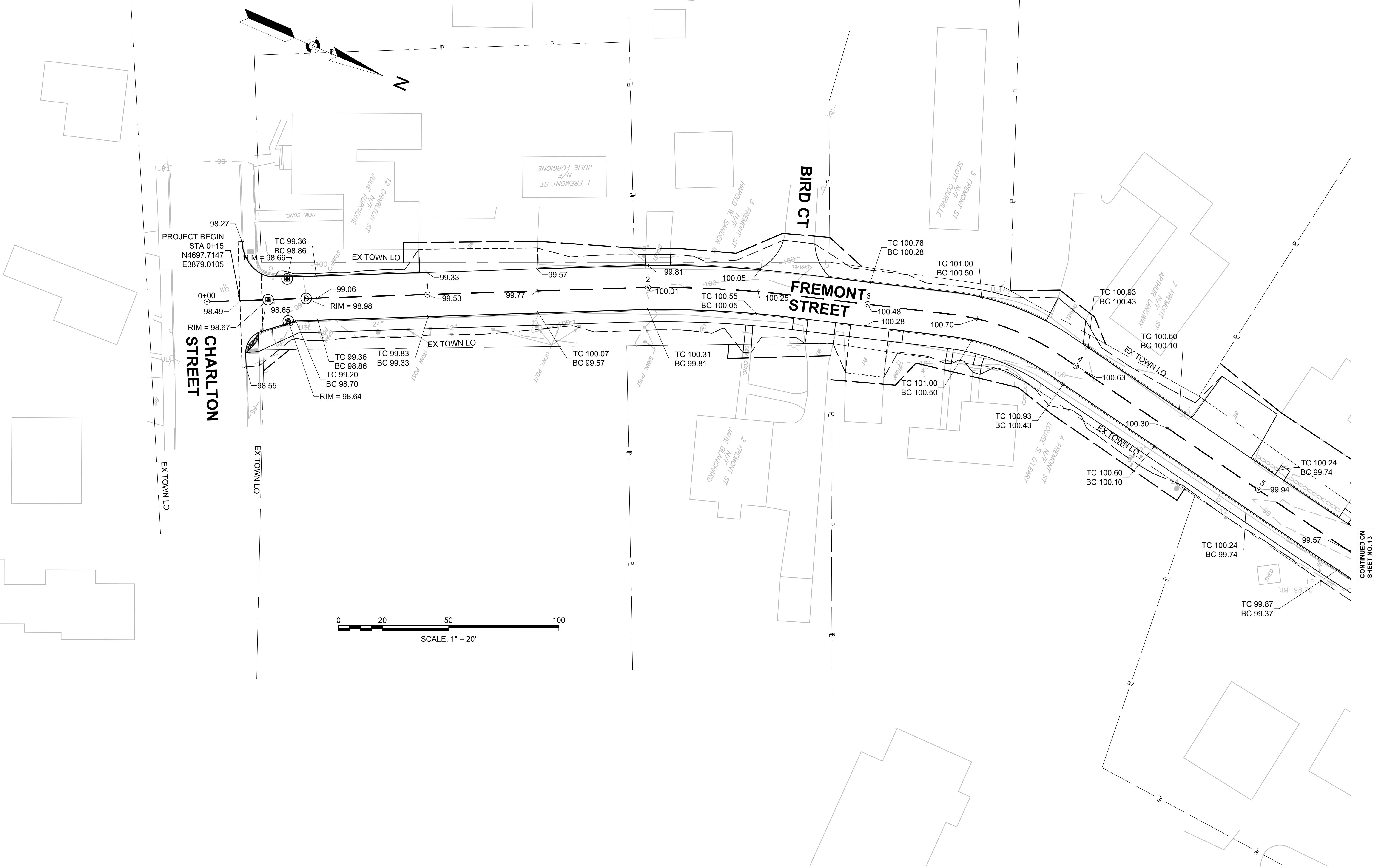
DESIGN DESIGNATION (MAIN STREET)

DESIGN SPEED 20 MPH
FUNCTIONAL CLASSIFICATION LOCAL

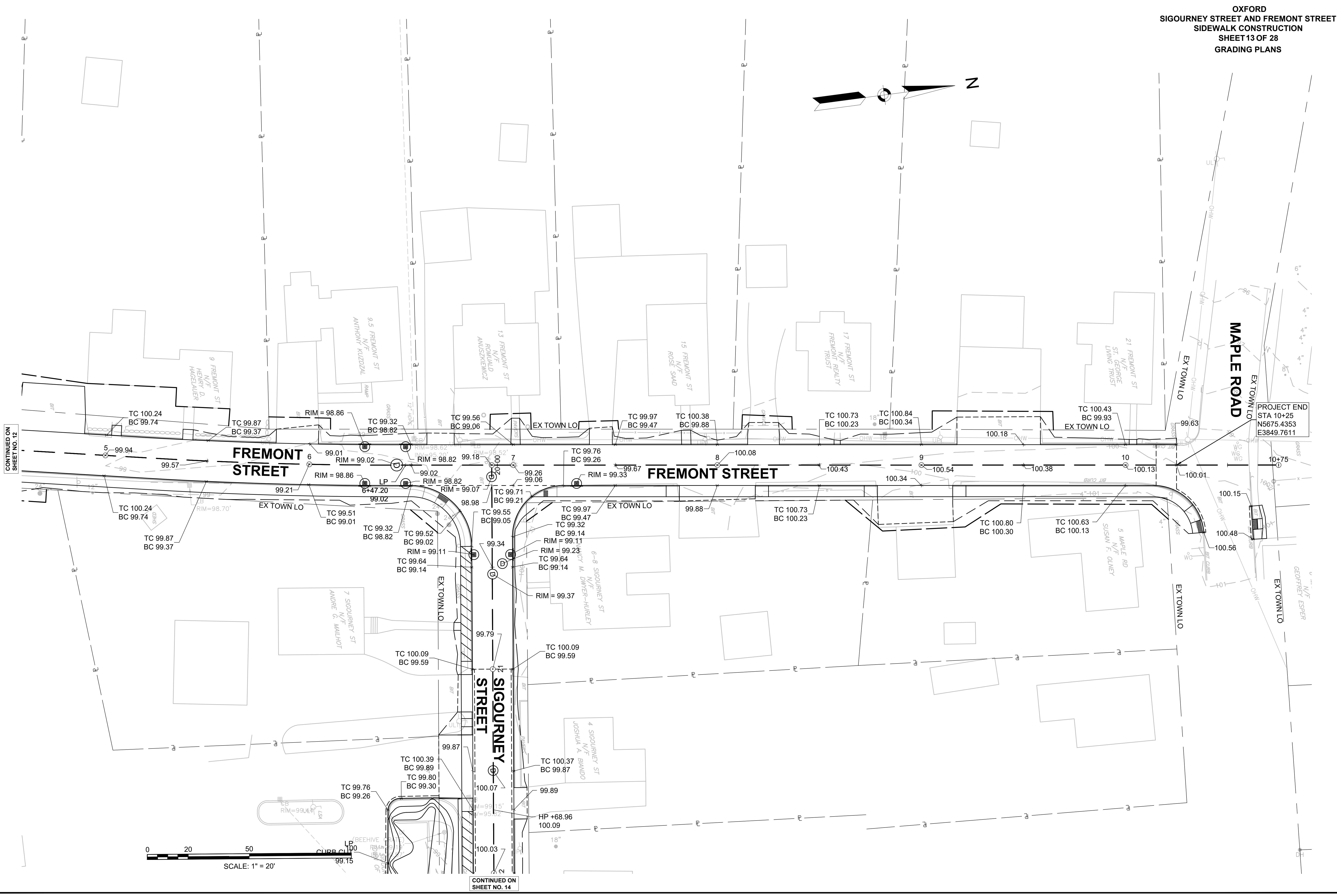
DATE	DESCRIPTION	REV #


Oxford MS4 Pilot Project Plans -
Select Stormwater Plans Provided

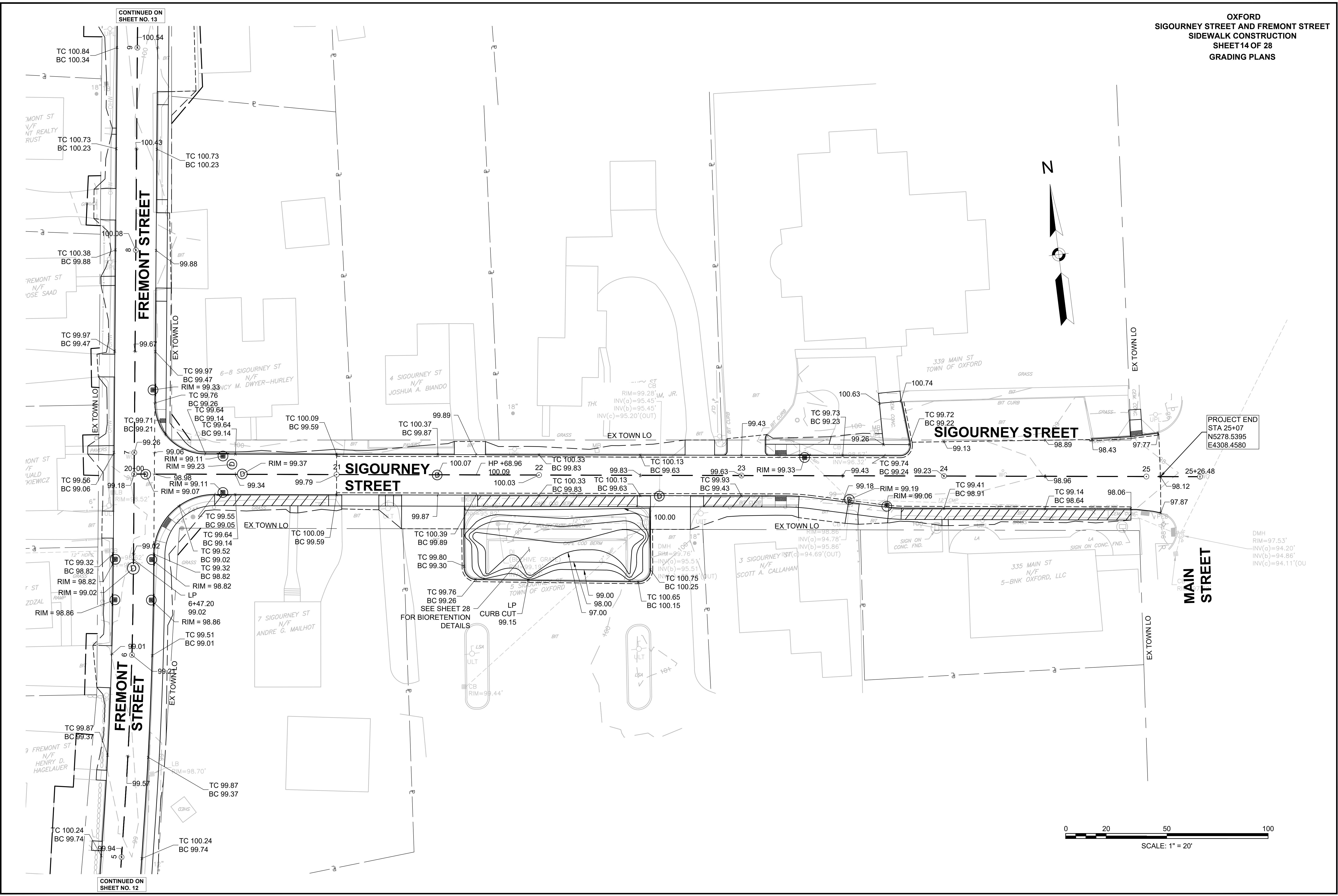
Nitsch Engineering
www.nitscheng.com
120 Front Street, Suite 820
Worcester, MA 01608
T: (508) 365-1034
F: (617) 338-6472
► Civil Engineering
► Land Surveying
► Transportation Engineering
► Structural Engineering
► Green Infrastructure
► Planning
► GIS

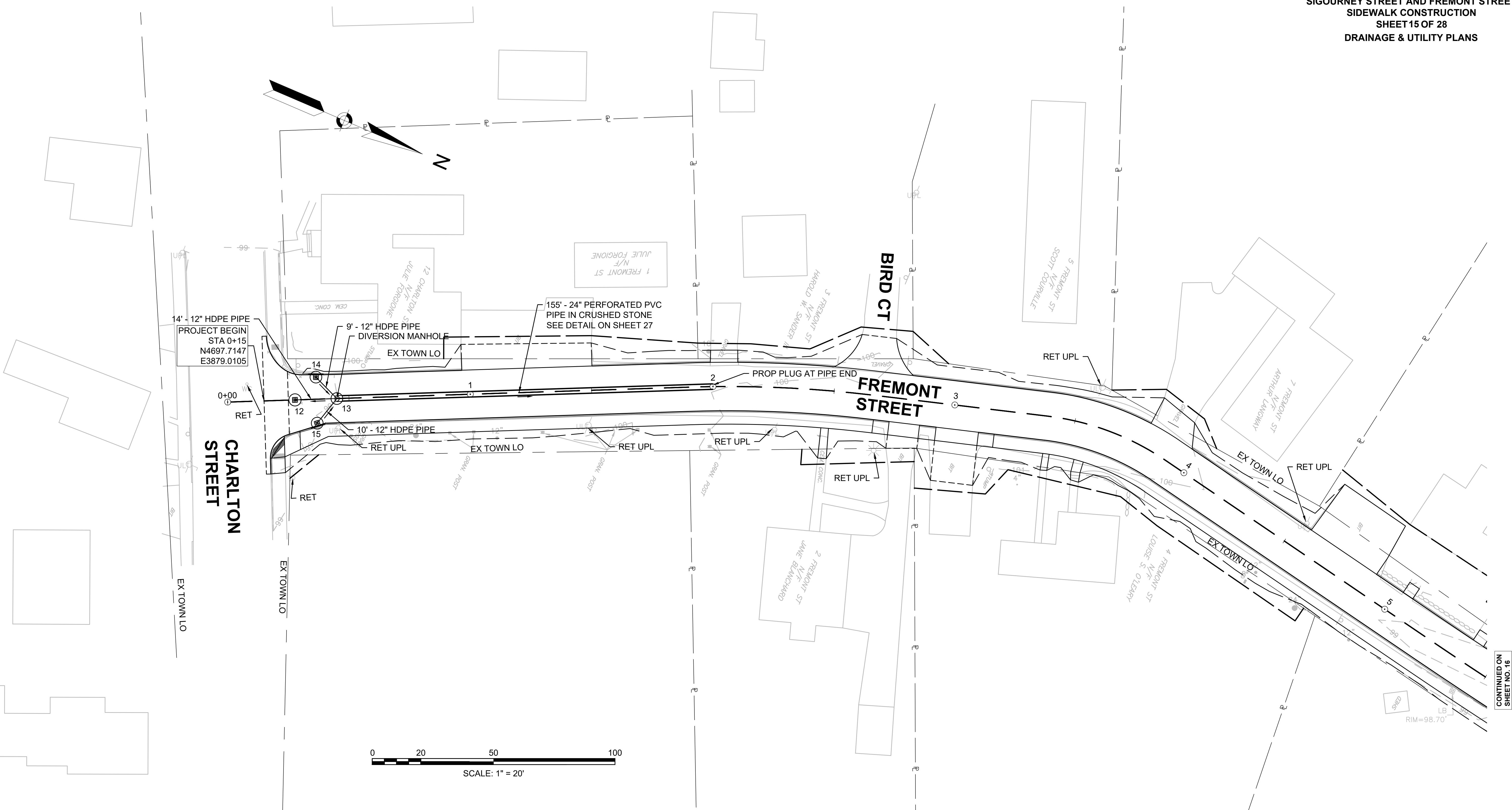

OXFORD
SIGOURNEY STREET AND FREMONT STREET
SIDEWALK CONSTRUCTION
SHEET 3 OF 28
KEY PLAN

14521.3-HD_KEY.DWG Plotted on 14-Mar-2023 3:25PM


**OXFORD
SIGOURNEY STREET AND FREMONT STREET
SIDEWALK CONSTRUCTION
SHEET 12 OF 28
GRADING PLANS**

Plotted on 14-Mar-2023 3:27 PM
14521.3_HB_GRADING.BWG


OXFORD
SIGOURNEY STREET AND FREMONT STREET
SIDEWALK CONSTRUCTION
SHEET 13 OF 28
GRADING PLANS


14521.3_HD_GRADING.DWG Plotted on 14-Mar-2023 3:27 PM

**OXFORD
SIGOURNEY STREET AND FREMONT STREET
SIDEWALK CONSTRUCTION
SHEET 14 OF 28
GRADING PLANS**

14521.3_HB_GRADING.BWG Plotted on 14-Mar-2023 3:28 PM

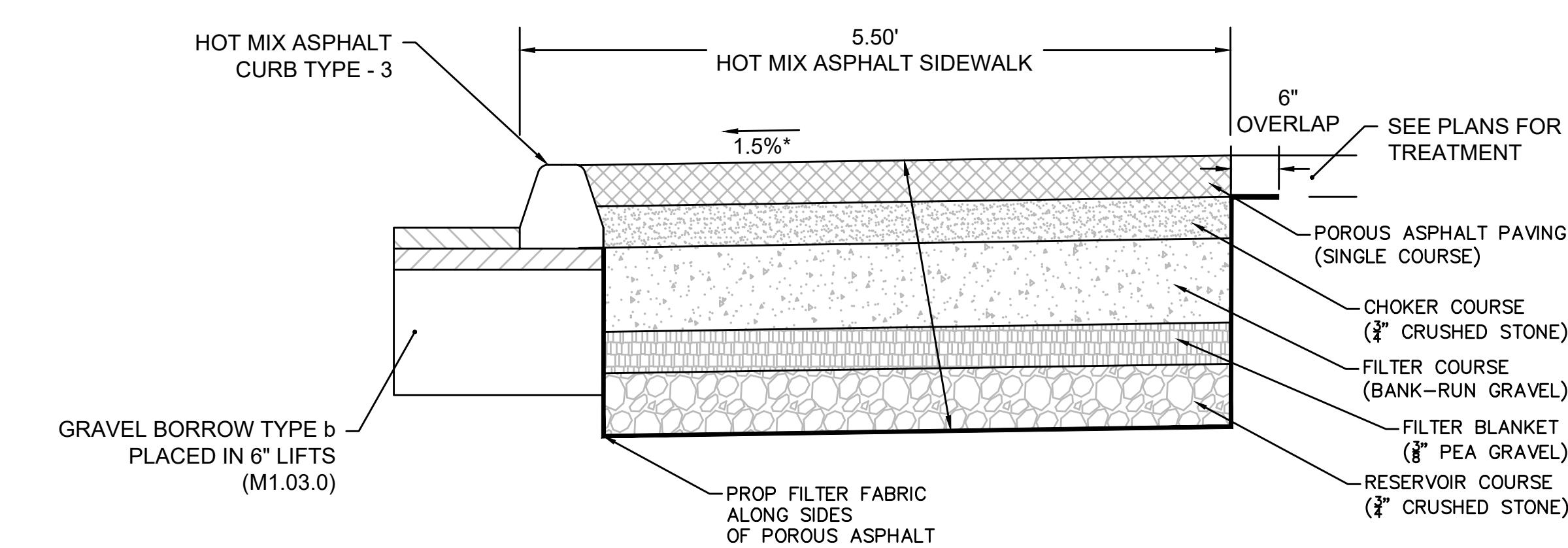
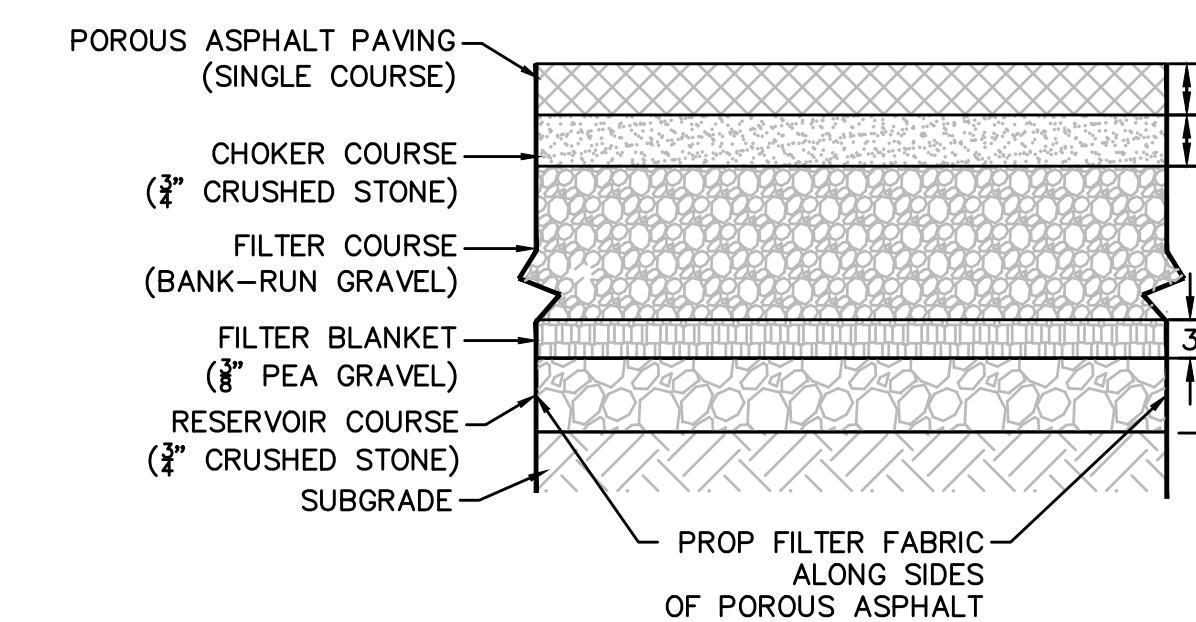
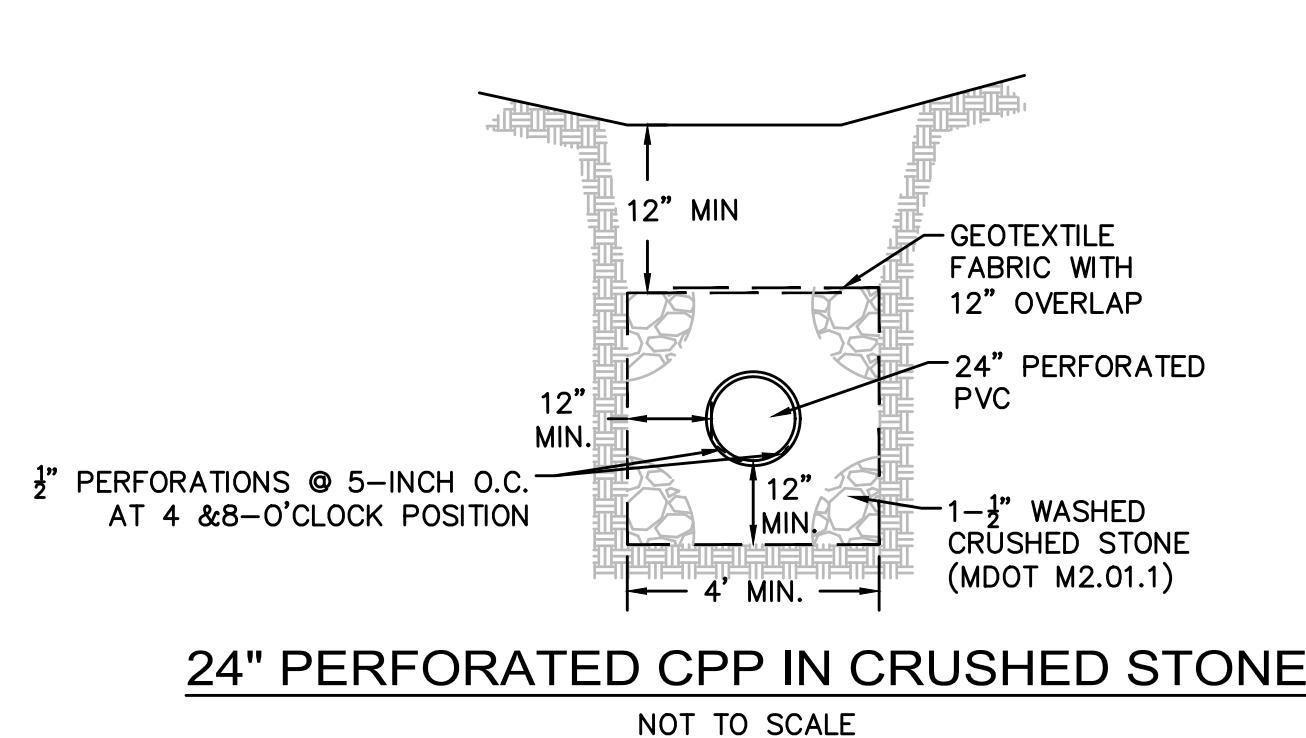
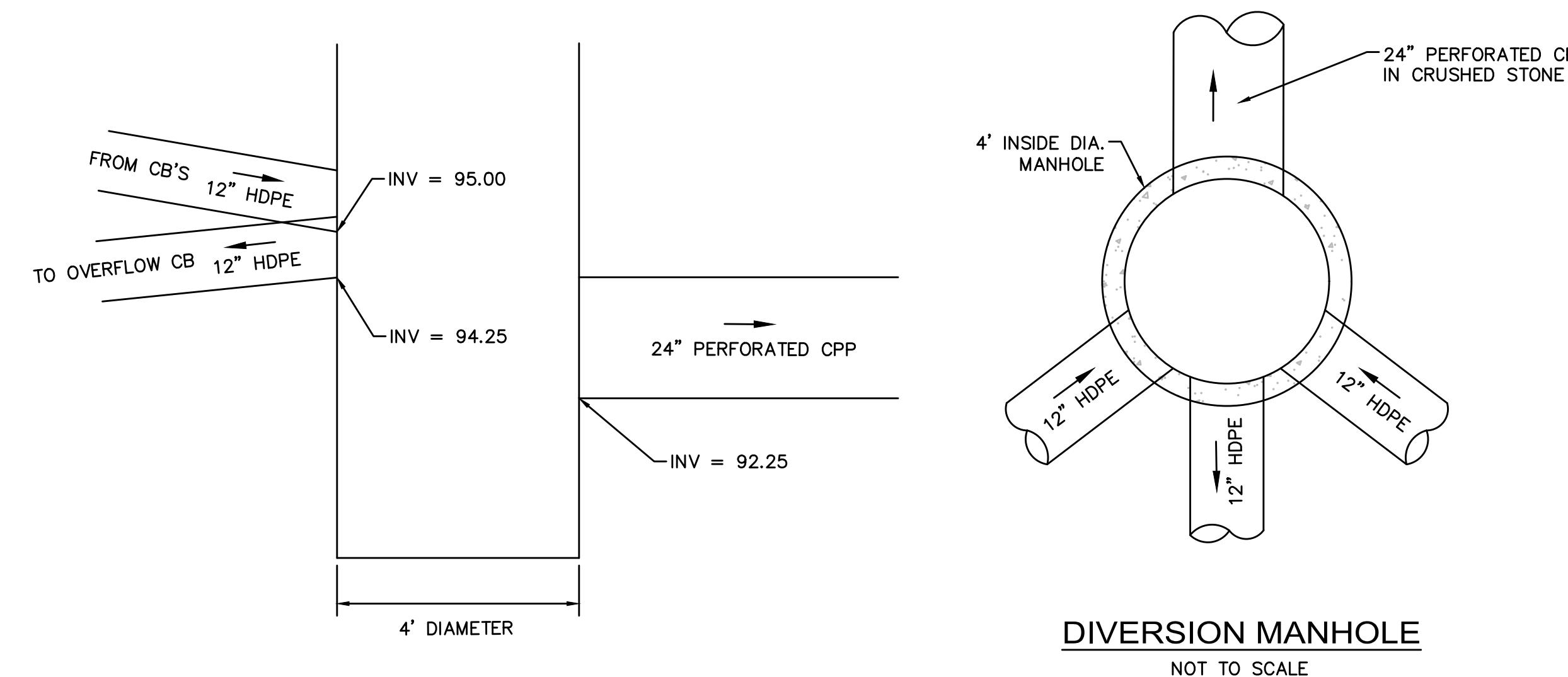
DRAINAGE STRUCTURE TABLE

DRAINAGE STRUCTURE TABLE						
Name/Type	Station	Offset	Rim Elev.	Inv. Elev. In	Inv. Elev. Out	Remarks
CB 12	0+18.16	0.0	98.67	I=94.65' (13)		
DMH 13	0+45.02	0.0	98.98	I=95.00' (14) I=95.00' (15)	I=94.25' (12" CPP OVERFLOW) I=92.25' (24" CPP)	DIVERSION MANHOLE W/ 4' SUM
CBCI 14	0+36.67	9.1 LT	98.66		I=95.16' (13)	
CBCI 15	0+36.58	9.9 RT	98.64		I=95.16' (13)	

OXFORD
SIGOURNEY STREET AND FREMONT STREET
SIDEWALK CONSTRUCTION
SHEET 17 OF 28
DRAINAGE & UTILITY PLANS

14521.3_HB_DRAINAGE & UTILITY.BWG Plotted on 15-Mar-2023 3:15 PM

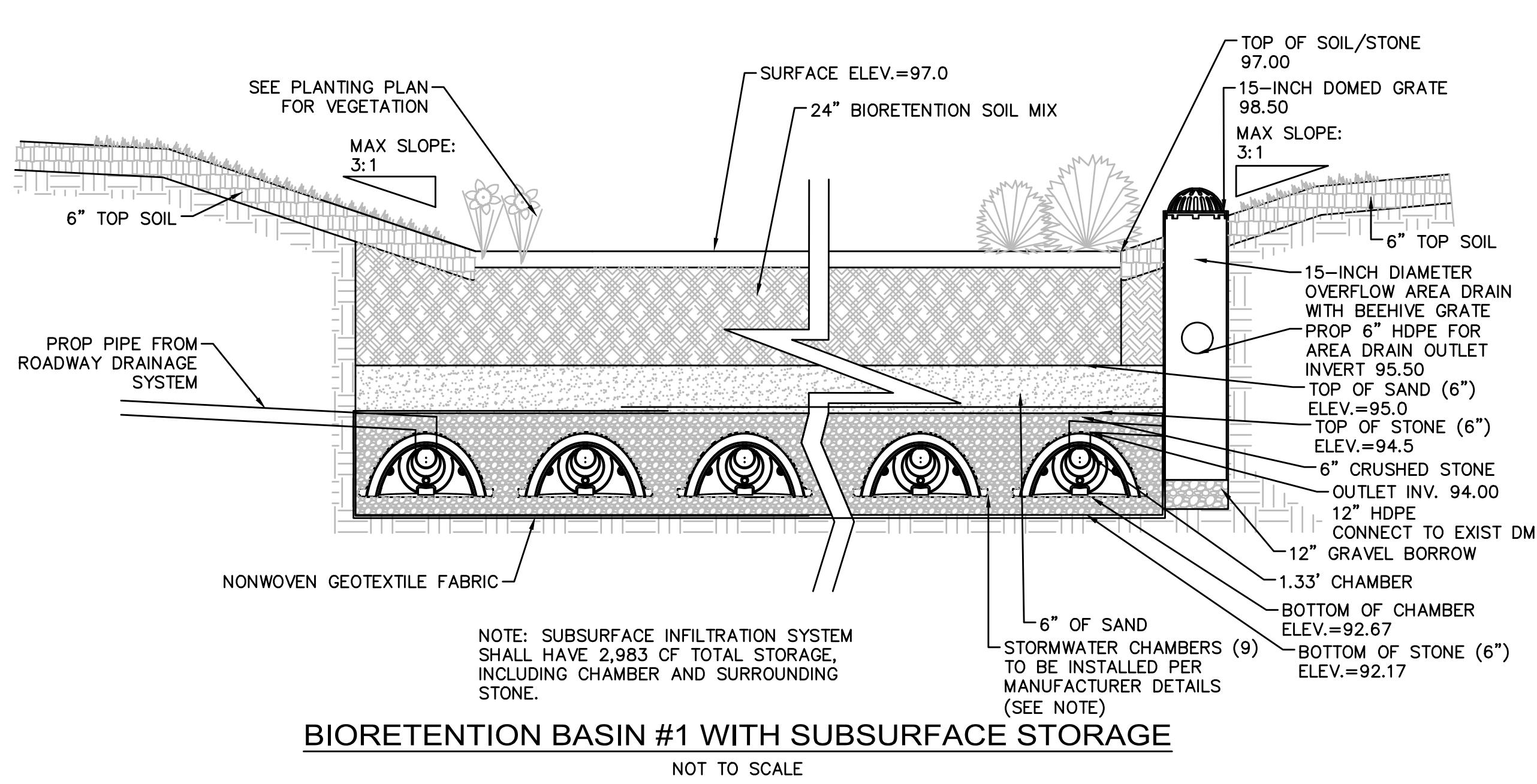
OXFORD
SIGOURNEY STREET AND FREMONT STREET
SIDEWALK CONSTRUCTION
SHEET 17 OF 28
DRAINAGE & UTILITY PLANS

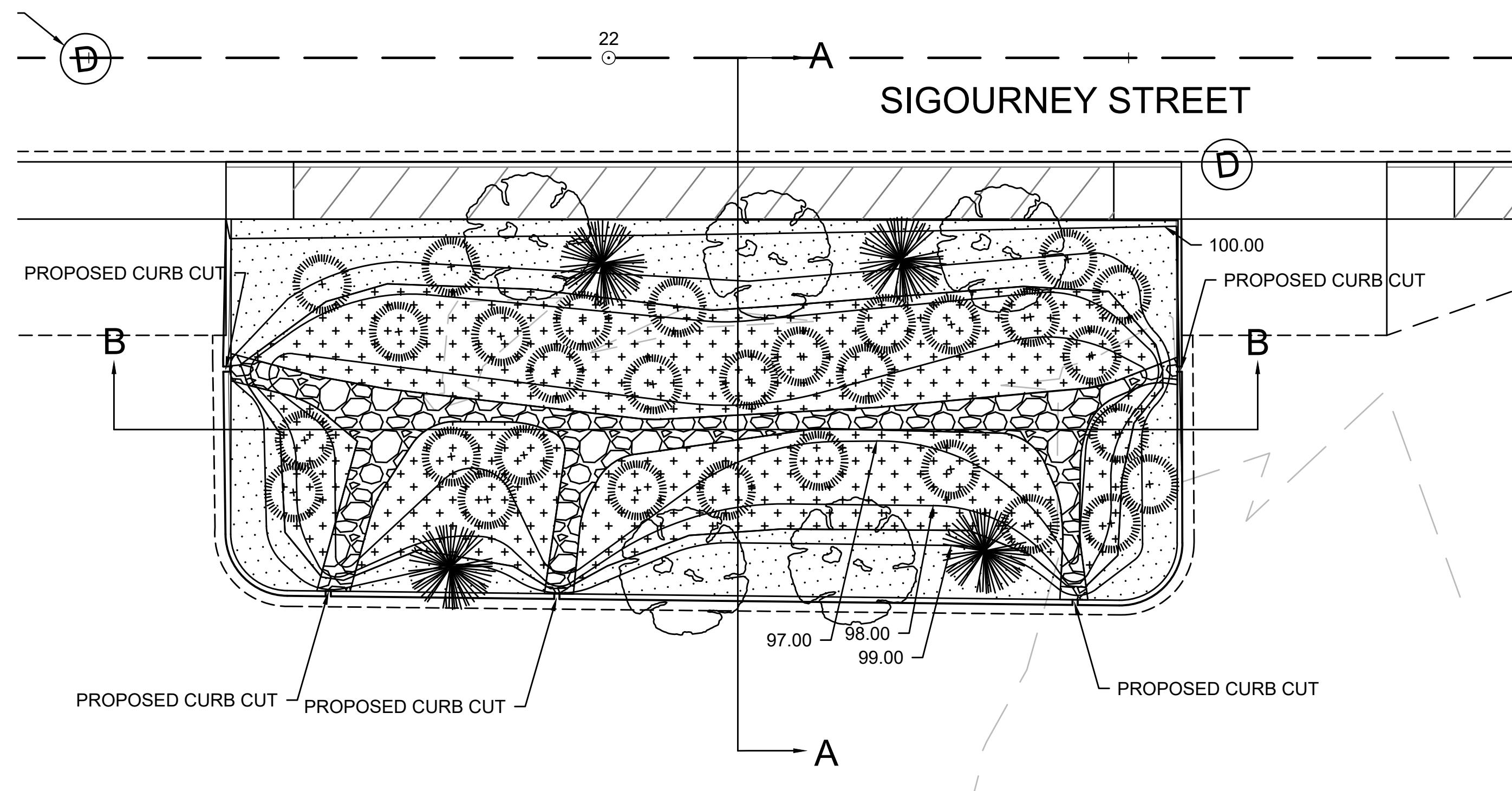




CONTINUED ON SHEET NO. 16

CONTINUED ON SHEET NO. 15

DRainage Structure Table

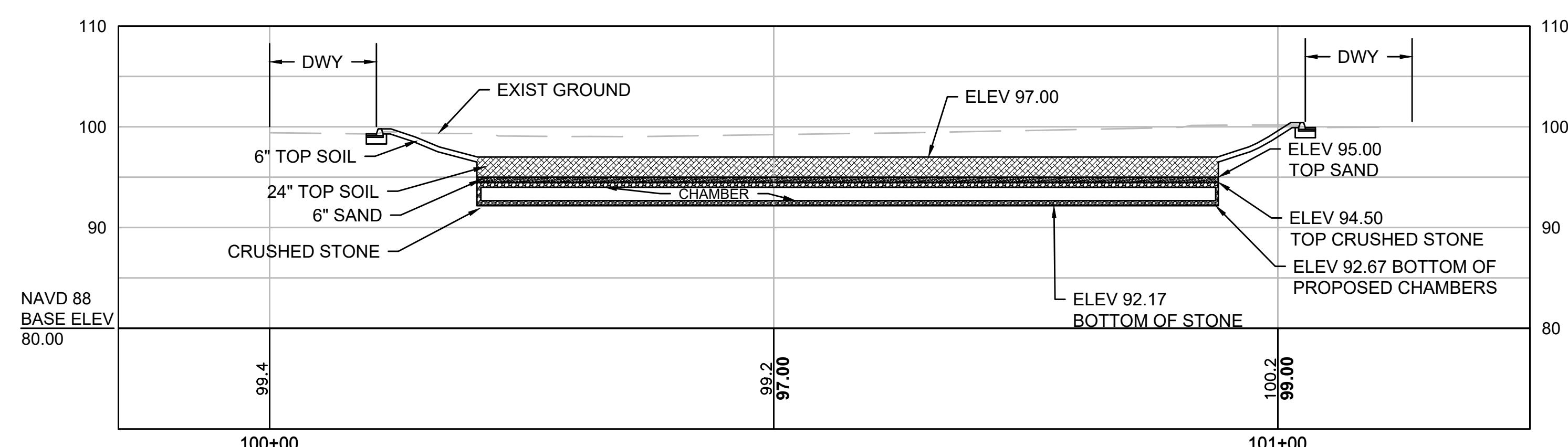
NAME/TYPE	STATION	OFFSET	RIM ELEV.	INV. ELEV. IN	INV. ELEV. OUT	REMARKS
CBCI 17	23+71.80	15.0 RT	99.06		I=94.87' (DMH 19)	OFFSET TOP
CBCI 18	23+31.15	9.0 LT	99.33		I=95.96' (DMH 19)	BUILD OVER EXIST PIPE
DMH 19	23+53.34	11.7 RT	99.19	I=95.86' (CBCI 18) I=94.78' (CBCI 17)		CIT
DMH 20	22+59.46	10.2 RT	99.57			CIT


SCALE: 1" = 20'

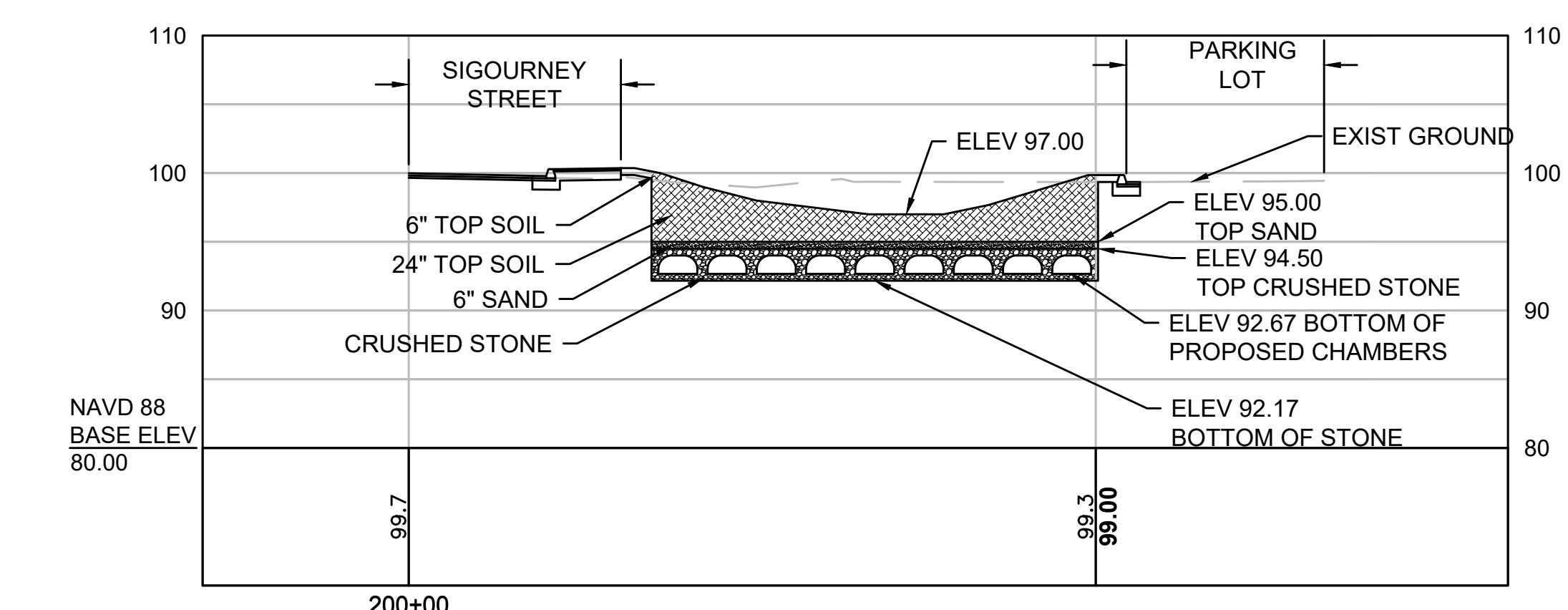

NOTES:

- EXCAVATION, POROUS MEDIA, GRADING, FILTER FABRIC, AND BACKFILL MATERIALS, FOR POROUS HOT MIX ASPHALT SHALL BE INCLUDED UNDER THE CONTRACT UNIT PRICE FOR ITEM 702.5 - POROUS ASPHALT SIDEWALK.
- HMA CURB INSTALLATION SHALL BE MEASURED AND PAID FOR UNDER ITEM 570.3, HOT MIX ASPHALT CURB - TYPE 3.
- GRAVEL BORROW UNDER THE CURB AND ROADWAY SHALL BE MEASURED AND PAID FOR UNDER ITEM 151, GRAVEL BORROW.
- POROUS ASPHALT SHALL NOT BE USED IN VEHICULAR AREAS.
- THE FULL PERMEABILITY OF THE PAVEMENT SURFACE SHALL BE TESTED BY APPLICATION OF CLEAN WATER AT THE RATE OF AT LEAST 5 GALLONS PER MINUTE (GPM) OVER THE SURFACE, USING A HOSE OR OTHER DISTRIBUTION DEVICE.

POROUS ASPHALT SECTION DETAIL AT SIDEWALK



PLANTING SCHEDULE			
	SYMBOL	SPECIES	QUANTITY
SMALL DECIDUOUS TREES		BETULA NIGRA, CORNU FLORIDA, PRUNUS VIRGINIANA	5
SMALL CONIFEROUS TREES		JUNIPERUS VIRGINIANA	4
SHRUBS		VIBURNUM DENTATUM, VACCINUM CORYMBOSUM, CORNU AMOMUM, SAMBUCUS CANADENSIS	30
SEEDMIX A		SHORT ROADSIDE POLLINATOR MEADOW MIX * MODIFY TO ALL MA NATIVE SPECIES	1200 SF (ABOVE EL. 98.25)
SEEDMIX B		ROADSIDE RIVERBANK MIX	3100 SF (BELOW EL. 98.25)
MODIFIED ROCKFILL		8" ANGLED STONE	400 SF


BIORETENTION PLAN VIEW
SCALE: 1" = 10'

BIORETENTION A-A

BIORETENTION SECTION VIEW A-A
(WEST TO EAST)
SCALE: 1" = 10'

BIORETENTION B-B

BIORETENTION SECTION VIEW B-B
(NORTH TO SOUTH)
SCALE: 1" = 10'