

APPENDIX A
COST INFORMATION

**PRESENT WORTH COSTS FOR WASTEWATER
TREATMENT/DISPOSAL COMPONENT 2
0.084 MGD to UBWPAD WWTF**

The following presents backup information to determine present worth costs for Wastewater Treatment/Disposal Component 2. Table 4-3 in Section 4.0 of this report summarizes these costs.

Assumptions:

20-year planning period (2010 – 2030)

Discount rate = 4.625%

Inflation rate = 3.2%

Effective discount rate = 1.38%

Present worth factor (uniform series) = 17.4

O&M costs = \$4,177/mile of sewer (Wastewater Collection Systems Management, Fifth Edition, Water Environment Federation (WEF), 1999); cost updated according to ENR index.

Midpoint flow = 61,500 gpd

Current treatment cost to UBWPAD = \$1.93/1,000 gallons.

Current quarterly fixed charge to Auburn = \$6590.00

Current flow cost to Auburn = \$0.25/1,000 gallons.

Assume the above costs increase proportionately over the 20-year period.

Assume treatment cost based on midpoint flow of 61,500 gpd

Auburn and UBWPAD O&M Cost:

Annual O&M Cost to UBWPAD: \$1.93/1000 gallons*61,500 gpd*365 = \$43,000

Annual fixed charge to Auburn: \$6590*4 = \$26,000

Annual flow charge to Auburn: \$0.25/1,000 gallons*61,500 gpd*365 = \$6,000

Total Annual O&M Cost: **\$75,000**

Present Worth of Annual O&M Cost: **17.4*\$75,000 = \$1,305,000**

Collection System O&M Cost:

Annual O&M Cost: **9 miles * \$4,177/mile = \$38,000**

Present Worth of Annual O&M Cost: **17.4*\$38,000 = \$661,000**

Total Annual O&M Cost – Auburn, UBWPAD & Collection System: **\$75,000 + \$38,000 = \$113,000**

Total Present Worth Cost – Auburn, UBWPAD & Collection System: **\$1,305,000 + \$661,000 = \$1,966,000**

**PRESENT WORTH COSTS FOR WASTEWATER
TREATMENT/DISPOSAL COMPONENT 3
0.120 MGD to ORSD WWTP**

The following presents backup information to determine present worth costs for Wastewater Treatment/Disposal Component 3. Table 4-3 in Chapter 4 of this report summarizes these costs.

Assumptions:

20-year planning period (2010 – 2030)

Discount rate = 4.625%

Inflation rate = 3.2%

Effective discount rate = 1.38%

Present worth factor (uniform series) = 17.4

Current collection and treatment cost to ORSD = \$400/year/single-family housing (sfh) unit

Assume that 1 sfh unit = 2.58 persons

Assume usage = 65 gpcd

Current flow cost to ORSD = $(\$400/[2.58 \text{ persons} * 65 \text{ gpcd} * 365]) * 1000 = \$6.53/1000 \text{ gallons}$

The above costs increase proportionately over the 20-year period.

Collection and treatment cost based on midpoint flow of 88,200 gpd

O&M Cost:

Annual O&M Cost to ORSD: $\$6.53/1000 \text{ gallons} * 88,200 \text{ gpd} * 365 = \$210,000$

Present Worth of Annual

O&M Cost: $17.4 * \$210,000 = \$3,654,000$

**PRESENT WORTH COSTS FOR WASTEWATER
TREATMENT/DISPOSAL COMPONENT 4
0.26 MGD at New Onsite WWTF**

The following presents backup information to determine present worth costs for Wastewater Treatment/Disposal Component 4. Table 4-3 in Chapter 4 of this report summarizes these costs.

Assumptions:

20-year planning period (2010 – 2030)

Discount rate = 4.625%

Inflation rate = 3.2%

Effective discount rate = 1.38%

Present worth factor (uniform series) = 17.4

Payment for all new construction in Oxford starts in 2010 and ends in 2030.

O&M costs = \$4,177/mile of sewer (Wastewater Collection Systems Management, Fifth Edition, WEF, 1999); cost updated according to ENR index.

Oxford Collection System Capital Cost (Groundwater Recharge at Sites 9, 10, 11):

Sewer extension construction cost = **\$8,475,000**

(See Table A-1)

Total capital cost with 45% contingencies for sewer system extensions =

\$8,475,000 + \$3,814,000 = \$12,289,000

Oxford Collection System O&M Cost (Sites 9, 10, 11):

Present worth cost of O&M = 7.7 miles * \$4,177/mile = **\$32,000*** 17.4 = **\$557,000**

Note: This is a very conservative estimate, based on year 2030 design flows over 20 years.

Oxford Collection System Capital Cost (Groundwater Recharge at Site 5):

Sewer extension construction cost = **\$16,160,000**

(See Table A-1)

Total capital cost with 45% contingencies for sewer system extensions =

\$16,160,000 + \$7,272,000 = \$23,432,000

Oxford Collection System O&M Cost (Site 5):

Present worth cost of O&M = 11.8 miles * \$4,177/mile = **\$49,000*** 17.4 = **\$853,000**

Note: This is a very conservative estimate, based on year 2030 design flows over 20 years.

Present Worth of Collection System Capital + O&M Cost = \$24,285,000

**PRESENT WORTH COSTS FOR WASTEWATER
TREATMENT/DISPOSAL COMPONENT 4
0.26 MGD at New Onsite WWTF
(Continued)**

Land Purchase:

Site 9: 12 acres @ 104,000/acre = **\$1,248,000**

Sites 10 + 11: 17 acres @ \$52,000/acre = **\$884,000** (50% of average cost for Ashworth Hill Development)

Site 5: No cost - Town-owned property

Total Land Purchase Cost = \$1,248,000 + \$884,000 = **\$2,132,000**

New 0.26 MGD WWTF w/ Groundwater Recharge:

Present worth of capital cost of WWTF w/ groundwater recharge area:

Equipment Cost = \$4,780,000

Equipment Replacement Cost = \$3,891,000

Equipment Salvage Value = \$2,422,000

Structure Costs = \$10,379,000

Structure Salvage Value = \$4,734,000

Present worth of capital cost WWTF= \$11,894,000 (Table A-2)

Annual O&M Cost New Plant = **\$490,000** (Table A-2)

Present worth of annual O&M New Plant= \$8,520,000 (Table A-2)

Present worth cost of WWTF = \$20,414,000 (Table A-2)

Groundwater Recharge Piping from WWTP to Recharge Site (9, 10, 11):

Construction cost = \$140,000 (See Table A-1)

Total capital cost with 45% contingencies for groundwater recharge piping =
\$140,000 + \$63,000 = **\$203,000**

**PRESENT WORTH COSTS FOR WASTEWATER
TREATMENT/DISPOSAL COMPONENT 5
Expanded ORSD WWTP**

The following presents backup information to determine present worth costs for Wastewater Treatment/Disposal Component 5. Table 4-3 in Chapter 4 of this report summarizes these costs.

Assumptions:

20-year planning period (2010 – 2030)

Discount rate = 4.625%

Inflation rate = 3.2%

Effective discount rate = 1.38%

Present worth factor (uniform series) = 17.4

O&M costs = \$4,177/mile of sewer (Wastewater Collection Systems Management, Fifth Edition, WEF, 1999); cost updated according to ENR index.

Oxford Collection System Capital Cost:

Sewer extension construction cost = **\$8,995,000** (Table A-1)

Total capital cost with 45% contingencies for sewer system extensions =

\$8,995,000 + \$4,048,000 = \$13,043,000

Oxford Collection System O&M Cost:

Present worth cost of O&M = 8.6 miles * \$4,177/mile = **\$36,000*** 17.4 = **\$626,000**

Note: This is a very conservative estimate, based on year 2030 design flows over 20 years.

Total Present Worth Cost of Oxford Collection System = \$13,669,000

ORSD WWTP Expansion Present Worth of Capital Cost:

Equipment Cost = \$116,000

Equipment Replacement Cost = \$94,000

Equipment Salvage Value = \$59,000

Structure Costs = \$2,441,000

Structure Salvage Value = \$1,113,000

Present Worth = \$1,479,000 (Table A-3)

ORSD WWTP Expansion O&M Cost:

Annual O&M Cost Plant Expansion = **\$99,000**

Present Worth = \$1,717,000 (Table A-3)

Present worth cost of WWTF Expansion = \$3,196,000 (Table A-3)

**PRESENT WORTH COSTS FOR WASTEWATER
TREATMENT/DISPOSAL COMPONENT 5
Expanded ORSD WWTP
(Continued)**

Groundwater Recharge Piping from WWTP to Recharge Site (9, 10, 11):

Construction cost = \$140,000 (See Table A-1)

Total capital cost with 45% contingencies for groundwater recharge piping =
\$140,000 + \$63,000 = **\$203,000**

Groundwater Recharge Piping from WWTP to Recharge Site (5):

Construction cost = \$3,645,000 (See Table A-1)

Total capital cost with 45% contingencies for groundwater recharge piping =
\$3,645,000 + \$1,640,000 = **\$5,285,000**

Land Purchase:

Site 9: No cost – expanding existing facility

Sites 10 + 11: 17 acres @ \$52,000/acre = **\$884,000** (50% of average cost for Ashworth
Hill Development)

Site 5: No cost - Town-owned property

**PRESENT WORTH COSTS FOR WASTEWATER
TREATMENT/DISPOSAL COMPONENT 6
0.26 MGD to Webster/Dudley AWWTF**

The following presents backup information to determine present worth costs for Wastewater Treatment/Disposal Component 6. Table 4-3 in Chapter 4 of this report summarizes these costs.

Assumptions:

20-year planning period (2010 – 2030)

Discount rate = 4.625%

Inflation rate = 3.2%

Effective discount rate = 1.38%

Present worth factor (uniform series) = 17.4

O&M costs = \$4,177/mile of sewer (Wastewater Collection Systems Management, Fifth Edition, WEF, 1999); cost updated according to ENR index.

Oxford Collection System Capital Cost:

Sewer extension construction cost = **\$19,740,000** (Table A-1)

Total capital cost with 45% contingencies for sewer system extensions =

$\$19,740,000 + \$8,883,000 = \$28,623,000$

Oxford Collection System O&M Cost:

Present worth cost of O&M = 12.8 miles * \$4,177/mile = \$53,000 * 17.4 = **\$922,000**

Note: This is a very conservative estimate, which is based on design year flows over 20 years.

Total Present Worth Cost of Oxford Collection System = \$29,545,000

New Webster Collection System Capital Cost:

Sewer extension capital cost = 50% of \$1,499,100 = **\$750,000** (Table A-1 – Assume 50% of total cost is Oxford's responsibility)

Total capital cost with 45% contingencies for sewer system extensions =

$\$750,000 + \$337,000 = \$1,087,000$

New Webster Collection System O&M Cost: 0.8 miles * \$4,177/mile = **\$3,000**

Existing Webster Treatment and Collection System O&M Cost: 0.26 MGD * \$9.36/1000 gal * 365 days/year = **\$888,000**

Present Worth Cost of Webster O&M

$\$3,000 + \$888,000 = \$891,000 * 17.4 = \$15,503,000$

Note: This is a very conservative estimate, based on year 2030 design flows over 20 years.

Present Worth Cost of Upgrades to existing Webster Pumping Stations = \$250,000

OXFORD CWMP

PHASE II – DEVELOPMENT AND
SCREENING OF ALTERNATIVES

**PRESENT WORTH COSTS FOR WASTEWATER
TREATMENT/DISPOSAL COMPONENT 7
0.826 MGD to Webster/Dudley AWWTF**

The following presents backup information to determine present worth costs for Wastewater Treatment/Disposal Component 7. Table 4-3 in Chapter 4 of this report summarize these costs.

Assumptions:

20-year planning period (2010 – 2030)

Discount rate = 4.625%

Inflation rate = 3.2%

Effective discount rate = 1.38%

Present worth factor (uniform series) = 17.4

O&M costs = \$4,177/mile of sewer (Wastewater Collection Systems Management, Fifth Edition, WEF, 1999); cost updated according to ENR index.

Oxford Collection System Capital Cost:

Sewer extension construction cost = **\$49,665,000** (Table A-1)

Total capital cost with 45% contingencies for sewer system extensions =

$\$49,665,000 + \$22,349,250 = \$72,014,000$

Assume phased construction; 4 projects, 5 years each.

$\$72,014,000/4 = \$18,000,000$ per phase

Phase I present worth \$18,000,000

Phase II (2015) present worth = $\$18,000,000 * (P/F, 5\%, 5) = \$18,000,000 * 0.9337 = \$16,807,000$

Phase III (2020) present worth = $\$18,000,000 * (P/F, 10\%, 5) = \$18,000,000 * 0.8718 = \$15,693,000$

Phase IV (2025) present worth = $\$18,000,000 * (P/F, 15\%, 5) = \$18,000,000 * 0.8140 = \$14,653,000$

Total Present Value = **\$65,153,000**

Oxford Collection System O&M Cost:

Present worth cost of O&M = 43.3 miles * \$4,177/mile = **\$181,000 * 17.4 = \$3,149,000**

Note: This is a very conservative estimate, which is based on year 2030 design flows over 20 years.

Total Present Worth Cost of Oxford Collection System = \$68,302,000

New Webster Collection System Capital Cost:

Assume Oxford is responsible for 50% of sewer extension capital cost.

Sewer extension capital cost = 50% of \$1,499,100 = **\$750,000** (Table A-1).

Total capital cost with 45% contingencies for sewer system extensions =

$\$750,000 + \$337,000 = \$1,087,000$

**PRESENT WORTH COSTS FOR WASTEWATER
TREATMENT/DISPOSAL COMPONENT 7
0.826 MGD to Webster/Dudley AWWTF
(Continued)**

New Webster Collection System O&M Cost:

Cost of O&M = 0.8 miles * \$4,177/mile = **\$3,000**

Existing Webster Treatment and Collection System O&M Cost:

Cost of O&M = 0.826 MGD * \$9.36/1000 gal * 365 days/year = **\$2,792,000**

Present Worth Cost of Webster O&M

\$3,000 + \$2,792,000 = \$2,795,000 * 17.4 = \$48,633,000

Note: This is a very conservative estimate, which is based on year 2030 design flows over 20 years.

Total Present Worth Cost of Webster Collection System = \$1,174,000

Present Worth Cost of Upgrades to existing Webster Pumping Stations = \$250,000

**PRESENT WORTH COSTS FOR WASTEWATER
TREATMENT/DISPOSAL COMPONENT 8
New 1.1 MGD WWTF**

The following presents backup information to determine present worth costs for Wastewater Treatment/Disposal Component 8. Table 4-3 in Chapter 4 of this report summarizes these costs.

Assumptions:

20-year planning period (2010 – 2030)

Discount rate = 4.625%

Inflation rate = 3.2%

Effective discount rate = 1.38%

Present worth factor (uniform series) = 17.4

O&M costs = \$4,177/mile of sewer (Wastewater Collection Systems Management, Fifth Edition, WEF, 1999); cost updated according to ENR index.

Oxford Collection System Capital Cost:

Sewer extension construction cost = **\$56,635,000** (Table A-1)

Total capital cost with 45% contingencies for sewer system extensions =
\$56,635,000 +\$25,485,750 = **\$82,121,000**

Assume phased construction – 4 projects 5 years apart, starting in 2010.

\$82,121,000/4 = \$20,530,000 per phase

Phase I present worth \$20,530,000

Phase II (2015) present worth = \$20,530,000*(P/F₅) = \$20,530,000*0.9337 = \$19,169,000

Phase III (2020) present worth = \$20,530,000*(P/F₁₀) = \$20,530,000*0.8718 = \$17,898,000

Phase IV (2025) present worth = \$20,530,000*(P/F₁₅) = \$20,530,000*0.8140 = \$16,711,000

Total Present Worth = \$74,308,000

Oxford Collection System O&M Cost:

Present worth cost of O&M = 61.8 miles * \$4,177/mile = **\$258,000*** 17.4 = **\$4,489,000**

Note: This is a very conservative estimate, which is based on year 2030 design flows over 20 years.

Total Present Worth Cost of Oxford Collection System = \$78,797,000

New 1.1 MGD WWTF w/ Groundwater Recharge:

Present worth of capital cost of WWTF w/ groundwater recharge area:

Equipment Cost = \$8,186,000

Equipment Replacement Cost = \$6,664,000

OXFORD CWMP

PHASE II – DEVELOPMENT AND
SCREENING OF ALTERNATIVES

**PRESENT WORTH COSTS FOR WASTEWATER
TREATMENT/DISPOSAL COMPONENT 8
1.1 MGD WWTF
(Continued)**

Equipment Salvage Value = \$4,148,000

Structure Costs = \$19,236,000

Structure Salvage Value = \$8,773,000

Present worth of capital cost WWTF= \$21,165,000 (Table A-2)

Annual O&M Cost New Plant = \$915,000 (Table A-2)

Present worth of annual O&M New Plant= \$15,896,000 (Table A-2)

Note: This is a very conservative estimate, which is based on year 2030 design flows over 20 years.

Present worth cost of WWTF = \$37,061,000 (Table A-2)

**PRESENT WORTH COSTS FOR WASTEWATER
TREATMENT/DISPOSAL COMPONENT 9
1.1 MGD to Webster/Dudley AWTF**

The following presents backup information to determine present worth costs for Wastewater Treatment/Disposal Component 9. Table 4-3 in Chapter 4 of this report summarizes these costs.

Assumptions:

20-year planning period (2010 – 2030)

Discount rate = 4.625%

Inflation rate = 3.2%

Effective discount rate = 1.38%

Present worth factor (uniform series) = 17.4

O&M costs = \$4,177/mile of sewer (Wastewater Collection Systems Management, Fifth Edition, WEF, 1999); cost updated according to ENR index.

Oxford Collection System Capital Cost:

Sewer extension construction cost = **\$59,625,000** (Table A-1)

Total capital cost with 45% contingencies for sewer system extensions =
\$59,625,000 + \$26,831,000 = **\$86,456,000**

Assume phased construction; 4 projects, 5 years each.

\$86,456,000/4 = \$21,614,000 per phase

Phase I present worth \$21,614,000

Phase II (2015) present worth = \$21,614,000*(P/F₅) = \$21,614,000*0.9337 = \$20,181,000

Phase III (2020) present worth = \$21,614,000*(P/F₁₀) = \$21,614,000*0.8718 = \$18,843,000

Phase IV (2025) present worth = \$21,614,000*(P/F₁₅) = \$21,614,000*0.8140 = \$17,594,000

Total Present Value = **\$78,232,000**

Oxford Collection System O&M Cost:

Present worth cost of O&M = 51.8 miles * \$4,177/mile = \$216,000* 17.4 = **\$3,758,000**

Note: This is a very conservative estimate, which is based on year 2030 design flows over 20 years.

New Webster Collection System Capital Cost:

Assume Oxford is responsible for 50% of sewer extension capital cost.

Sewer extension capital cost = 50% of \$1,499,100 = **\$750,000** (Table A-1)

Total capital cost with 45% contingencies for sewer system extensions =

\$750,000 + \$337,000 = **\$1,087,000**

**PRESENT WORTH COSTS FOR WASTEWATER
TREATMENT/DISPOSAL COMPONENT 9
1.2 MGD to Webster/Dudley AWWTF
(Continued)**

New Webster Collection System O&M Cost:

Cost of O&M = 0.8miles * \$4,177/mile = \$3,000

Existing Webster Treatment and Collection System O&M Cost:

Cost of O&M = 1.1 MGD * \$9.36/1000 gal * 365 Days/year = \$3,758,000

Present Worth Cost of Webster O&M

$\$3,000 + \$3,758,000 = \$3,761,000 * 17.4 = \$65,442,000$

Note: This is a very conservative estimate, which is based on year 2030 design flows over 20 years.

Present Worth Cost of Upgrades to existing Webster Pumping Stations = \$250,000

Table A-1
Collection System Capital Costs
Component 4 - Site 9,10,11

	Quantity	Unit Cost	Total Cost
Pump Station (sm)	3	\$500,000	\$1,500,000
Pump Station (lg)	0	\$1,000,000	\$0
Force Main in Easements (lf)	1,700	\$50	\$85,000
Force Main in Town Roads (lf)	4,400	\$100	\$440,000
Force Main in State Roads (lf)	6,500	\$200	\$1,300,000
Gravity Sewer (lf)	24,000	\$200	\$4,800,000
Low Pressure Sewer (lf)	4,000	\$50	\$200,000
Bridge or River Crossing	3	\$50,000	\$150,000
Active RR Crossing (lf)	0	\$1,500	\$0
Total			\$8,475,000

Component 4 - Site 5

	Quantity	Unit Cost	Total Cost
Pump Station (sm)	2	\$500,000	\$1,000,000
Pump Station (lg)	3	\$1,000,000	\$3,000,000
Force Main in Easements (lf)	0	\$50	\$0
Force Main in Town Roads (lf)	4,600	\$100	\$460,000
Force Main in State Roads (lf)	6,500	\$200	\$1,300,000
Gravity Sewer (lf)	51,000	\$200	\$10,200,000
Low Pressure Sewer (lf)	0	\$50	\$0
Bridge or River Crossing	4	\$50,000	\$200,000
Active RR Crossing (lf)	0	\$1,500	\$0
Total			\$16,160,000

Component 5 - Site 9,10,11

	Quantity	Unit Cost	Total Cost
Pump Station (sm)	3	\$500,000	\$1,500,000
Pump Station (lg)	0	\$1,000,000	\$0
Force Main in Easements	1,300	\$50	\$65,000
Force Main in Town Roads	9,800	\$100	\$980,000
Force Main in State Roads	6,500	\$200	\$1,300,000
Gravity Sewer	24,000	\$200	\$4,800,000
Low Pressure Sewer	4,000	\$50	\$200,000
Bridge or River Crossing	3	\$50,000	\$150,000
Active RR Crossing (lf)	0	\$1,500	\$0
Total			\$8,995,000

Table A-1
Collection System Capital Costs
(Continued)

Component 6

	Quantity	Unit Cost	Total Cost
Pump Station (sm)	2	\$500,000	\$1,000,000
Pump Station (lg)	5	\$1,000,000	\$5,000,000
Force Main in Easements	0	\$50	\$0
Force Main in Town Roads	7,300	\$100	\$730,000
Force Main in State Roads	6,500	\$200	\$1,300,000
Gravity Sewer	57,000	\$200	\$11,400,000
Low Pressure Sewer	0	\$50	\$0
Bridge or River Crossing	5	\$50,000	\$250,000
Active RR Crossing (lf)	40	\$1,500	\$60,000
Total			\$19,740,000

Component 7

	Quantity	Unit Cost	Total Cost
Pump Station (sm)	10	\$500,000	\$5,000,000
Pump Station (lg)	4	\$1,000,000	\$4,000,000
Force Main in Easements	1,800	\$50	\$90,000
Force Main in Town Roads	14,600	\$100	\$1,460,000
Force Main in State Roads	1,200	\$200	\$240,000
Gravity Sewer	185,000	\$200	\$37,000,000
Low Pressure Sewer	26,100	\$50	\$1,305,000
Bridge or River Crossing	3	\$50,000	\$150,000
Active RR Crossing (lf)	280	\$1,500	\$420,000
Total			\$49,665,000

Component 8

	Quantity	Unit Cost	Total Cost
Force Main in Easements	2,800	\$50	\$140,000
Force Main in Town Roads	40,600	\$100	\$4,060,000
Force Main in State Roads	8,100	\$200	\$1,620,000
Gravity Sewer	242,400	\$200	\$48,480,000
Low Pressure Sewer	32,300	\$50	\$1,615,000
Bridge or River Crossing	6	\$50,000	\$300,000
Active RR Crossing (lf)	280	\$1,500	\$420,000
Total			\$56,635,000

Table A-1
Collection System Capital Costs
(Continued)

Component 9

	Quantity	Unit Cost	Total Cost
Pump Station (sm)	12	\$500,000	\$6,000,000
Pump Station (lg)	5	\$1,000,000	\$5,000,000
Force Main in Easements	1,800	\$50	\$90,000
Force Main in Town Roads	15,900	\$100	\$1,590,000
Force Main in State Roads	8,100	\$200	\$1,620,000
Gravity Sewer	215,200	\$200	\$43,040,000
Low Pressure Sewer	32,300	\$50	\$1,615,000
Bridge or River Crossing	5	\$50,000	\$250,000
Active RR Crossing (lf)	280	\$1,500	\$420,000
Total			\$59,625,000

New Webster Sewers

	Quantity	Unit Cost	Total Cost
Pump Station (sm)	1	\$500,000	\$500,000
Pump Station (lg)	0	\$1,000,000	\$0
Force Main in Easements	0	\$50	\$0
Force Main in Town Roads	1,729	\$100	\$172,900
Force Main in State Roads	0	\$200	\$0
Gravity Sewer	4,131	\$200	\$826,200
Low Pressure Sewer	0	\$50	\$0
Bridge or River Crossing	0	\$50,000	\$0
Active RR Crossing (lf)	0	\$1,500	\$0
Total			\$1,499,100

Piping to Groundwater Recharge Site 9, 10, 11

	Quantity	Unit Cost	Total Cost
Pump Station (sm)	0	\$500,000	\$0
Pump Station (lg)	0	\$1,000,000	\$0
Force Main in Easements	2,800	\$50	\$140,000
Force Main in Town Roads	0	\$100	\$0
Force Main in State Roads	0	\$200	\$0
Gravity Sewer	0	\$200	\$0
Low Pressure Sewer	0	\$50	\$0
Bridge or River Crossing	0	\$50,000	\$0
Active RR Crossing (lf)	0	\$1,500	\$0
Total			\$140,000

Table A-1
Collection System Capital Costs
(Continued)

Piping to Groundwater Recharge Site 5

	Quantity	Unit Cost	Total Cost
Pump Station (sm)	0	\$500,000	\$0
Pump Station (lg)	0	\$1,000,000	\$0
Force Main in Easements	900	\$50	\$45,000
Force Main in Town Roads	36,000	\$100	\$3,600,000
Force Main in State Roads	0	\$200	\$0
Gravity Sewer	0	\$200	\$0
Low Pressure Sewer	0	\$50	\$0
Bridge or River Crossing	0	\$50,000	\$0
Active RR Crossing (lf)	0	\$1,500	\$0
Total			\$3,645,000

Table A-2
New WWTF
Present Worth Cost Analysis

Assume:		
Discount Rate:	4.625%	20 year planning period
Inflation Rate:	3.20%	50 year life for structures
Effective Rate:	1.381%	15 year life for equipment
		Include replacement costs and salvage values

Number of Years:	20	
Multipliers:		
	P/F	P/A
@ Discount Rate:	0.4048	12.8682
@ Effective Rate:	0.7601	17.3721
	A/P	0.0777
		0.0576

Number of Years:	15	
Multipliers:		
	P/F	P/A
@ Discount Rate:	0.5075	10.6478
@ Effective Rate:	0.8141	13.4650
	A/P	0.0939
		0.0743

	Option 1	Option 2
Equipment Cost = Ce	\$4,780,000	\$8,186,000
Structure Costs = Cs	\$10,379,000	\$19,236,000
Annual O&M Cost = Ca =	\$490,436	\$915,056

$$\text{Present Worth} = Ce + Ce^*(P/F_{15}) - (10/15)*Ce^*(P/F_{20}) + Cs - Cs^*0.6*(P/F_{20}) + (P/A_{20})*Ca$$

OPTION 1 New 0.274 MGD Plant	Project Costs Using Effective Rate:
Equipment Cost (Ce) =	\$4,780,000
Equipment Replacement Cost = Ce*(P/F ₁₅) =	\$3,891,000
Equipment Salvage Value = (10/15)*Ce*(P/F ₂₀) =	\$2,422,000
Structure Cost (Cs) =	\$10,379,000
Structure Salvage Value = 0.6*Cs*(P/F ₂₀) =	\$4,734,000
Present Worth of Capital Cost =	\$11,894,000
Present Worth of Annual O&M = (P/A ₂₀)*Ca =	\$8,520,000
Present Worth =	\$20,414,000

Table A-2
New WWTF
Present Worth Cost Analysis
(Continued)

OPTION 2 New 1.1 MGD Plant	Project Costs Using Discount Rate:
Equipment Cost (Ce) =	\$8,186,000
Replacement Cost = $Ce * (P/F_{15})$ =	\$6,664,000
Salvage Value = $(10/15) * Ce * (P/F_{20})$ =	\$4,148,000
Structure Cost (Cs) =	\$19,236,000
Salvage Value = $0.6 * Cs * (P/F_{20})$ =	\$8,773,000
Present Worth of Capital Cost =	\$21,165,000
Present Worth of Annual O&M = $(P/A_{20}) * Ca$ =	\$15,896,000
Present Worth =	\$37,061,000

Table A-3
Oxford/Rochdale WWTF Expansion
Present Worth Cost Analysis

Assume:

Discount Rate:	4.625%	20 year planning period
Inflation Rate:	3.20%	50 year life for structures
Effective Rate:	1.381%	15 year life for equipment
Include replacement costs and salvage values		

Number of Years: 20		
Multipliers:		
P/F	P/A	A/P
@ Discount Rate:	12.8682	0.0777
@ Effective Rate:	17.3721	0.0576

Number of Years: 15		
Multipliers:		
P/F	P/A	A/P
@ Discount Rate:	10.6478	0.0939
@ Effective Rate:	13.4650	0.0743

Equipment Cost = Ce	\$116,000
Structure Costs = Cs	\$2,441,000
Annual O&M Cost = Ca =	\$98,840

$$\text{Present Worth} = Ce + Ce^*(P/F_{15}) - (10/15)*Ce^*(P/F_{20}) + Cs - Cs^*0.6*(P/F_{20}) + (P/A_{20})*Ca$$

Scenario 1(b)	Project Costs Using Effective Rate:
Equipment Cost (Ce) =	\$116,000
Equipment Replacement Cost = Ce*(P/F ₁₅) =	\$94,000
Equipment Salvage Value = (10/15)*Ce*(P/F ₂₀) =	\$59,000
Structure Cost (Cs) =	\$2,441,000
Structure Salvage Value = 0.6*Cs*(P/F ₂₀) =	\$1,113,000
Present Worth of Annual O&M = (P/A ₂₀)*Ca =	\$1,717,000
Present Worth =	\$3,196,000